

Neutrino oscillation results of the OPERA experiment in the CNGS beam Budimir Kliček¹, Matteo Tenti², on behalf of the OPERA Collaboration

¹Ruđer Bošković Institute, Croatia; ²INFN-Bologna, Italy

The OPERA experiment

The OPERA experiment [1] was designed to detect tau neutrino appearance in the

The OPERA experiment (cont.)

Combined v_{τ} and v_{e} appearance (sterile)

NFN

INFN sezione Boloana

Exclusion plots in the sterile sector using v_{τ} and v_{e} appearance joint fit

90% C.L. Allowed

predominantly muon neutrino CNGS beam [2].

The OPERA detector target consisted of about 150 thousand stacks of lead plates and emulsion films, called Emulsion Cloud Chamber (ECC) elements, embedded between scintillator planes. The detector also featured two muon spectrometers, used for momentum reconstruction of charged particles.

$v_{\mu} \rightarrow v_{\tau}$ appearance channel (std. osc)

Final results on the v_{τ} appearance channel were published in 2018 [3]. Ten v_{τ} candidates were observed with expected background of 2 ± 0.4 events, corresponding to significance 6.1 σ .

In the sterile sector, OPERA excludes recent MiniBoone result [5] with significance of 3.3 σ , using joint fit of v_r and v_e samples.

v_µ disappearance channel

Scintillator planes were used to predict the ECC element in which neutrino interaction occured. Selected ECCs were then extracted, and contained emulsions were scanned by automatic scanning microscopes.

Assuming maximal mixing, OPERA measured the atmospheric mass splitting in v_{τ} appearance mode:

 $\left|\Delta m_{32}^2\right| = \left(2.7^{+0.7}_{-0.6}\right) \times 10^{-3} \text{ eV}^2$

Combined v_{τ} and v_{e} appearance (std. osc.)

OPERA detecor is also sensitive to v_e CC interactions. Expected number of v_e candidate events is 31.9 ± 3.2 in case of no oscillations, and 34.3 ± 3.4 for standard oscillations. 35 events were observed, consistent with both cases [4]. A joint fit using v_τ and v_e appearance

Due to the lack of a near detector, NC/CC event rate ratio was used to search for v_µ disappearance signal. Assuming all other oscillation parameters fixed, an upper limit on atmospheric mass splitting was obtained: $\left|\Delta m_{32}^2\right| < 4.1 \times 10^{-3} \text{ eV}^2 @ 90\% \text{ C.L.}$

Conclusions

OPERA is the only experiment able to study all three channels of v_{μ} oscillatios: $v_{\mu} \rightarrow v_{\tau}$, $v_{\mu} \rightarrow v_{e}, v_{\mu} \rightarrow v_{\mu}$. Apart from the primary v_{τ} analysis, a joint fit of v_{τ} and v_{e} has been performed in both standard and sterile hypothesis. Additionally, a search to v_{μ} disappeaance has been performed.

Data taking run lasted from 2008 to 2012 with an exposure of 17.97 x 10^{19} p.o.t, in which 19505 events were recorded in the target, of which 5603 were fully reconstructed in emulsion.

in θ_{13} - θ_{23} plane has been performed.

 θ_{13} vs. θ_{23} constraint using joint fit of v_{τ} and v_{e} samples

References

- 1. R. Acquafredda et al. (OPERA), JINST 4 (2009) P04018
- K. Elsener, Reports No. CERN 98-02 and No. INFN/AE-98/05, 1998; R. Bailey et al., Reports No. CERN-SL-99-034-DI and No. INFN-AE-99-05, 1999, addendum to Reports No. CERN 98-02 and No. INFN-AE-98-05, 1998; CNGS Web site, http://proj-cngs.web.cern.ch/proj-cngs
- 3. N. Agafonova et al. (OPERA), Phys. Rev. Lett. 120.21 (2018), p. 211801
- 4. N. Agafonova et al. (OPERA), JHEP 06 (2018), p. 151
- 5. A. A. Aguilar-Arevalo et al. (MiniBooNE), Phys. Rev. Lett. 121 (2018), p. 221801

e-mail: budimir.klicek@irb.hr

Presented at the 21st International Workshop on Neutrinos From Accelerators (NUFACT2019) in Daegu, South Korea, 2019.