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Abstract. Random numbers are essential for our modern information-based society. Unlike frequently 
used pseudo-random generators, physical random number generators do not depend on deterministic 
algorithms but rather on a physical process to provide true randomness. In this work we present a 
conceptually simple optical quantum random number generator that features special characteristics 
necessary for application in a loophole-free Bell inequality test, namely: (1) very short latency between 
the request for a random bit and time when the bit is generated; (2) all physical processes relevant to 
the bit production happen after the bit request signal; and (3) high efficiency of producing a bit upon a 
request (100% by design). This generator is characterized by further desirable characteristics: ability of 
high bit generation rate, possibility to use a low detection-efficiency photon detector, a high ratio of 
number of bits per detected photon (≈2) and simplicity of the bit generating process. Generated 
sequences of random bits pass NIST STS test without further postprocessing. 

Introduction 

Digital data processing in computers, mobile devices, ATM machines etc., does have a huge impact on our 
information-based society. Digital processing is strictly deterministic. But sometimes randomness is 
required. Ability to generate random numbers is required for cryptographic protocols which are necessary 
to ensure digital security, privacy and integrity of communicated data, as well as for many other digital 
applications including but not limited to: internet trade, crypto currency, cloud computing, e-banking, 
secure e-mail access, online gambling, Monte Carlo modeling of natural phenomena, randomized 
algorithms and scientific research. While computers can generate long sequences of numbers that have 
good statistical properties via so-called pseudo-random algorithms, such number sequences remain 
deterministic and thus predictable. 
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In contrast to computational methods used by pseudo-random number generators, physical random 
numbers generators derive random numbers from a physical source of a reasonably random process e.g. 
flipping a coin. However, systems relying on classical motion actually do have a component of 
deterministic prediction that will be transferred to the random numbers obtained thereof. On the other 
extreme is the quantum theory (also known as Quantum Mechanics or QM for short), a branch of physics 
that strives to understand and predict the properties and behavior of tiny objects, such as elementary 
particles. One intriguing aspect of QM is that properties of a particle are not determined with arbitrary 
precision until one measures them, consequently the individual result of a measurement contains an 
inevitable intrinsic random component. This characteristic of the quantum theory provides fundamental 
randomness that can be used for generating true random numbers. While QM allows for completely 
random number generators, in practice "the devil is in the detail" of practical realization: whether a 
certain part is doing what it is supposed to do in theory and with what precision.  It is therefore crucial to 
investigate and build such parts and bit generating methods that come as close as possible to their 
theoretical ideal. 

Quite generally, quantum random number generators (QRNG) can be divided into two broad categories 
depending on their type of operation: firstly continuous which produce random numbers at their own 
pace and secondly triggered which produce a single random number (eg. one bit or one set of bits) upon 
a request, as illustrated in Fig. 1. Both, continuous and triggered RNGs feature the Strobe output which 
generates a short logic pulse when the new random bit is available at the Random Bit output. Additionally, 
the triggered type features a Trigger input. When a pulse is sent to that input it triggers a series of physical 
events and measurements - resulting in generation of a new random bit. Examples of continuous 
generators include those that extract random numbers from time-wise random events such as radioactive 
decay [1], photon arrival [2], or beamsplitter based [3-4] RNG’s. Examples of a triggered RNG include 
sampled time-wise random toggling flip-flop [5-6] (bit generating probability equal to 1) and beamsplitter 
with a pulsed or on-demand single-photon light source [4] (bit gen. probability < 1). An important 
consideration is the latency between a moment of trigger and the moment when the random bit is 
available for readout (technically the delay between the Trigger and the Strobe pulses).  

 
Fig. 1. Continuous (a) and triggered (b) random number generators. 

An interesting further requirement does come from experimental loophole-free Bell inequality tests. Bell 
test allows distinguishing quantum mechanics from local hidden variable theories. These experiments are 
also quite important for future implementation of quantum key distribution devices [7]. Experimental 
tests performed so far do suffer from so called "loopholes" [8]. In order to close the "locality" [9] as well 
as the "freedom-of-choice" loophole [10] one needs to decide on random setting of detection basis by 
means of a RNG that satisfies three properties: (1) all physical processes required for production of a bit 
must happen completely in the future of the trigger, that is anything that happened before the trigger 
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must not have any influence on the generated bit value; (2) a random bit is produced upon a request with 
certainty within a bounded time (𝜏𝜏𝐿𝐿); (3) in order to enable realistic experimental implementation of a 
loophole-free Bell test, including detection loophole [11], [12], the delay 𝜏𝜏𝐿𝐿 must be shorter than qubit 
flight times from the production to the detection sites which is typically a few tens of nanoseconds. None 
of the generators or generating principles known so far satisfies all those requirements simultaneously to 
that extent. 

This work is based on our previous research of a QRNG whose randomness can be brought close to 
theoretical perfection by suitable tuning of the device's controllable parameters in order to minimize 
effect of the hardware imperfections [32] and thus mitigate the "devil in the detail" problem. This 
particular QRNG is unique in simultaneously satisfying three characteristics mentioned above, having a 
100% efficiency of producing a bit upon a request by design and a latency 𝜏𝜏𝐿𝐿 = (9.8 ±  0.2) ns. Generated 
bits pass the NIST Statistical Test Suite (STS) [9]. All this make this QRNG suitable for even the most 
demanding applications, including the loophole-free Bell test. 

Concept of a low-latency QRNG 

Our generator, shown in Fig. 2, comprises: a bit request input (Trigger Input), a laser diode (LD), a single 
photon detector (PD), and a coincidence circuit consisting of a single AND gate. It functions in the following 
way. The external trigger signal causes LD to emit a short (sub-nanosecond) light pulse. We define that 
one random bit is generated upon every trigger signal. The value of the random bit is defined as the state 
of the detector's output at the moment of positive-going edge of the synchronous Strobe signal which is 
derived from the Trigger signal by a suitable delay (latency). Note, if emission and detection of light were 
classical processes then detection would either happen every time (if pulse energy is higher than some 
given threshold) or never (if below the threshold). However, due to the quantum nature of light, detection 
of a photon arising from the laser pulse is a binomial process with success probability 𝑝𝑝1 that can take on 
any value in the range [0, 1]. The energy of the light pulse falling upon the detector is carefully set such 
that the probability 𝑝𝑝1 of detecting a photon (and thus generating a value of “1”) is as close as possible to 
the ideal value of 𝑝𝑝1 = 0.5.  We assumed that the laser is stable in power and the detector's efficiency is 
constant during the measurement time. Note, the detection efficiency of the chosen PD is irrelevant since 
it is always possible to set pulse power such that the above condition is met. This is in contrast with e.g. 
pulsed beam-splitter method [4] where efficiency of detector affects the bit generation rate and thus it 
can never reach unity. In this device however, for each and every trigger signal we get a bit from the 
QRNG, hence we call the device 100% efficient.  
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Fig. 2. Conceptual schematic diagram of the low-latency quantum random number generator.  

Under the assumption that both, the light source and the detector, are completely reset to their initial 
conditions between subsequent triggers, it is impossible for generated bit values to “communicate”, i.e. 
influence each other. Consequently there would be no correlation among successive bits. We will 
elaborate later how this assumption can be guaranteed in practice. Having these two characteristics 
(probability of ones equal to 0.5 and absence of correlation among successive bits) a pool of generated 
bits has no other possibility than to be random. Namely, according to min-entropy theory, laid out in Ref. 
[31], a sufficient condition for a RNG to generate truly random bits is that it generates any 𝑛𝑛-bit string 
with an a priori  probability of 1/2𝑛𝑛. Now, for 𝑛𝑛 = 1 this is simply a condition that probability of ones is 
equal to 1/2, which is probably the most intuitive characteristic of a random bit string. Interesting thing 
happens for 𝑛𝑛 ≥ 2 where the RNG must have (at least) 𝑛𝑛 bits of memory to store the substring and be 
able to recognize it as one that needs to be generated with probability different than some other substring 
of the same length. Note that this type of behavior is absolutely impossible without a memory. But what 
if we make sure there is no memory in our RNG and yet engineer it such that it generates ones and zeros 
with equal probability? To the extent to which we can make these  

We conclude that for the generator depicted n Fig. 2., in principle, a bit generated upon a trigger has no 
history prior to that trigger because all relevant physical processes, namely: (1) powering of the laser 
diode and subsequent light pulse emission, (2) photon detection and (3) detector-strobe coincidence, are 
all happening after the trigger. In practice, we will make sure that it has no memory either. The bit-
generating efficiency of the method is high: it yields two random bits per photon detection as compared 
to ≤ 1 bit for beamsplitter [4] and ≤ 0.5 for arrival-time [2] methods. Even though this high efficiency 
does not allow for higher bit generation rate, because the ultimate rate is bounded by inverse of the dead 
time, it does put a less strain to the detector reducing its power consumption and possibly extending its 
lifetime. 

Experimental setup 

Sub-nanosecond pulsed laser 

In the experimental realization of the QRNG shown in Fig. 2, light pulses are obtained from a single mode 
laser diode LD (Sony DL3148-025, 650 nm). The laser diode is driven by a sub-nanosecond current pulse 
formed by a simple RLC circuit upon each positive-going edge of the trigger pulse. Passive driver design 
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ensures smallest delay between the driving electrical pulse and the light pulse. Coarse adjustment of the 
energy of light pulses is made by the variable capacitor C. The RLC network circuit and the laser diode are 
mounted on an XY translation stage and can move relative to a 50 µm pinhole placed in front of the photon 
detector thus allowing for a fine tuning of the pulse detection probability 𝑝𝑝1. The attenuation of light is 
performed by means of geometric misalignment between the laser mode and the aperture of the pinhole. 
The goal of this adjustment is to have 𝑝𝑝1 as close as possible to the ideal value of 0.5. The energy of the 
light pulse also depends on the bias voltage VBIAS which, in principle, allows for automatic bias zeroing via 
a negative feedback loop. The simplicity of the electrical and mechanical designs is intended to minimize 
the time lapse between a trigger pulse and the arrival of the optical pulse to the single-photon detector.  

The optical pulse from the laser diode circuit, shown in Fig. 2, features a jitter of 190 ps FWHM with 
respect to the trigger raising-edge. In order to avoid degradation of pulse power and shape, shortest 
period between two consecutive triggers should be ≥ 40 ns. The combined delay between the trigger 
input and photon detector output corresponding to detected photon(s) from the light pulse is (6.5 +- 0.2) 
ns and has a jitter of 370 ps FWHM for detectors with SLiK SPAD, as shown in Fig. 3, and about 750 ns 
FWHM for detectors with SUR500. The SUR500 diode has significantly smaller diffusion tail than SLiK 
diode, thus in both cases virtually all detection pulses are contained within 8.5 ns delay from the laser 
trigger pulse. 

 
Fig. 3. Time profile of the optical pulse emitted by the laser diode convoluted with the jitter of a 
detector with a SLiK SPAD. The main part has full width at half maximum of 370 ps. Virtual all 
pulses are emitted within ≈2 ns.  

The laser can be triggered at will with a shortest period between two consecutive pulses of about 40 ns 
(maximum 25 MHz repetition rate). At shorter delays pulse power and shape degrades. 

Single-photon detectors 

For this study we use two types of home-made single-photon detectors which differ in the silicon single-
photon avalanche photodiode (SPAD) that is used as a sensor. Each detector consists of a silicon single-
photon avalanche diode (SPAD) operated in Geiger mode and actively quenched. We will show how 
different characteristics of the detectors affect quality of the generated random numbers. 
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The distinctive and important characteristic of the avalanche quenching circuits (AQC) used in this study 
is that the delay between the avalanche and the output pulse (the detection delay) is quite small, equal 
to about 6.5 ns and that they contain an integrated pulse shaping circuit, shown in Fig. 4, which allows 
setting the output pulse to any value between 8 ns and 50 ns by means of potentiometer P1, without 
changing the detection delay.   

 
Fig. 4. Pulse stretching/blanking part of the avalanche quenching circuit. 

The first detector type makes use of SPADs recovered from PerkinElmer SPCM-AQR modules, also known 
as "SLiK". We have built two detectors of this type. Active quenching circuit is a modification of the AQC 
described in Ref. [9] optimized for this particular SPAD type. A photodiode is operated at -10 oC and excess 
voltage of 19 V. Characteristics of this detector type are: dead time 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22 ns, output pulse width 
𝜏𝜏𝑝𝑝𝑝𝑝 = 8-50 ns (adjustable), detection efficiency of 71% at 650 nm, jitter of 320 ps FWHM and dark counts 
of 200 cps and 750 cps for each detector respectively.   

The second detector type makes use of a silicon avalanche photodiode SUR500 manufactured by Laser 
Components. Even though the manufacturer states that this SPAD cannot be used for photon counting in 
photon-counting Geiger mode, we succeed to obtain reproducible avalanches that correspond to 
detection of photons. The avalanche current triggered by a single photon is quite small, a few times 
smaller than that of the SLiK diode, so we use a modification of the AQC described in Ref. [33] optimized 
for this type of SPAD. A photodiode is operated at -10 oC and an excess voltage of 18 V. Characteristics of 
this detector type are: dead time 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 25.5 ns, output pulse width 𝜏𝜏𝑝𝑝𝑝𝑝 = 8-50 ns (adjustable), 
detection efficiency of 38% at 650 nm, jitter of 730 ps FWHM, and dark counts of 84.6 kHz. 

Since, as it will become clear later, afterpulsing has a crucial impact on performance of the QRNG, we also 
measure afterpulsing probability and afterpulsing lifetime for the detectors, using single lifetime 
afterpulsing model [19] and method described in Ref. [34]. Measured distributions of time intervals 
between successive detections, for the two detector types, are shown in Fig. 5. From this, we obtain total 
afterpulsing probability 𝑃𝑃 = 0.047 and lifetime 𝜏𝜏𝑎𝑎 = 33 ns for SliK detectors, while 𝑃𝑃 =  0.016, 𝜏𝜏𝑎𝑎 = 8.0 
ns for the SUR500 detector. Note that 𝑃𝑃 is just a parameter of exponential distribution and by itself does 
not give a realistic estimate of afterpulsing. Namely, dead time absorbs a fraction of afterpulses that 
depends on 𝜏𝜏𝑎𝑎. For SLiK detector visible afterpulses amount 2.3% of all pulses, while for SUR500 detector 
visible afterpulses constitute only 0.055% of all pulses. 
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Fig. 5. Distributions of time intervals between successive detections, for the two detector types: 
SLiK (dashed line) and SUR500 (full line). Afterpulses are apparent as peaks above the flat 
background. 

Strobe signal 

Due to the laser jitter and intrinsic time resolution of single-photon detectors, photon detections jitter 
with respect to the trigger signal. Therefore, the Strobe signal should appear a bit later than the detector's 
output (as shown in Fig. 6) in order to read a well-defined bit value. For both types of detectors, taking 
the delay of 2 ns, the total latency budget between the Trigger signal and the Strobe has to be set to about 
8.5 ns. The variable delay line, depicted in Fig. 2, is realized as a coaxial cable of suitable length. 

 
Fig. 6. Strobe – detector timing detail (4 ns/div time scale). Width of the photon counter pulse is 
𝜏𝜏𝑝𝑝𝑝𝑝 = 8 ns, and duration of the strobe pulse is 𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 8 ns. By means of the variable delay line 
(shown in Fig. 2) the relative delay ∆𝑡𝑡 between the two signals is set to 2 ns, which is enough to 
overcame mutual jitter of the pulsed laser and the photon detector, thus enabling readout of a 
well-defined random state of the detector's output. 

Random number generation modeling and practical realization 

Even though, in theory, as explained above, there should be no correlation among generated bits, due to 
inevitable memory effects in realistic devices some autocorrelation appears also in experimental 
realization of the QRNG. Successive pulses of a pulsed laser diode are phase randomized exhibiting a 
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Poisson statistics of number of emitted photons per pulse (𝑛𝑛) [23-24]. The detection of such a state is 
ether supposed to be ballistic (𝑛𝑛 independent detection trials) or superlinear [14]. Crucial insight into the 
present QRNG is that any details of photon emission or detection are irrelevant as long as all physical 
processes pertaining to one emission and subsequent detection event are completed (i.e. die off) before 
the next trigger (a random bit request moment). This would ensure no correlations among generated bits. 
However, while the turn-on and turn-off processes in a laser diode have typical lifetimes on the order of 
<100 ps [15], a photon detection imperfections (dark counts, dead time, afterpulsing) involve effects on a 
time scale of tens to hundreds of nanoseconds that ultimately limit the achievable trigger rate and 
randomness. Dark counts are randomly distributed in time and therefore do not carry per se any 
correlating information and are furthermore greatly suppressed by tight coincidence between strobe and 
detector pulses. However, dead time and afterpulsing may cause correlations among bits. Since 
afterpulsing probability of the used APD dies-off nearly exponentially in time [16], in the limit of long 
enough trigger period, only neighboring bits may be non-negligibly correlated. Under that condition, 
correlations among bits is characterized by the serial autocorrelation between neighboring bits, namely 
coefficient  𝑎𝑎1, defined as [17]: 

𝑎𝑎𝑘𝑘 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑥𝑥𝑖𝑖+𝑘𝑘 − 𝑥̅𝑥)𝑁𝑁−𝑘𝑘
𝑖𝑖=1

∑ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑁𝑁−𝑘𝑘
𝑖𝑖=1

2                                                     (1) 

where 𝑥𝑥𝑖𝑖 are generated bits and lag 𝑘𝑘 = 1. Throughout the paper we use statistics of 𝑁𝑁 = 109 bits for 
each measurement point, leading to statistical error of 1/√𝑁𝑁 − 𝑘𝑘 ≈ 3.2 ∙ 10−5. Random bits have been 
generated upon a periodic trigger with frequency spanning from 1 to 25 MHz. Statistical bias, defined as 
𝑏𝑏 = 𝑝𝑝1 − 0.5, was manually adjusted to zero within ±0.0005 before each measurement point. The 
generated bits were transferred to a PC computer via a USB2 controller. Correlation coefficient a1 has 
been evaluated using ENT software [18]. Results are shown as hollow dots in Fig. 7. 

 
Fig. 7. A series of autocorrelation coefficients a1 as a function the triggered bit rate, measured for 
two distinct detector pulse widths (𝜏𝜏𝑝𝑝𝑝𝑝): 8 ns (hollow dots) and 21 ns (filled dots), for a detectors 
based upon SLiK SPAD. Statistics per coefficient is 109 bits. One sigma error bars are barely visible 
being roughly equal to the dot size.  

We see that a1 is generally small, negative and that its magnitude rises with the rate. To explain this 
behavior, we start by considering a successful detection of a photon (bit value "1") as shown in Fig. 8, 



9 
 

where ∆𝑡𝑡 is the delay between expected photon detection and the strobe pulse (explained in Fig. 5), 𝜏𝜏𝑝𝑝𝑝𝑝 
and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 are the detector pulse width and dead time respectively, while 𝑇𝑇 is the bit generation period. 

 
Fig. 8. Time sequence of detection and afterpulse events that cause negative autocorrelation 
between subsequent random bits.  

The next bit value is requested/generated a period T later. Afterpulsing in conjunction with dead time 
causes two competing effects. First, at time T there will be an enhanced probability 𝑃𝑃+ to generate "1" 
due to an afterpulse appearing in coincidence with the strobe. Second, with probability 𝑃𝑃−, an afterpulse 
appearing less that the dead time 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 and before the strobe will cause the detector to miss the next 
photon whose probability would otherwise be ½. The total correlation is then given as: 

𝑎𝑎1 =
1
2

[𝑃𝑃+ − 𝑃𝑃−] =
1
2 �

� 𝑃𝑃𝑎𝑎(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇+Δ𝑡𝑡

𝑇𝑇+Δ𝑡𝑡−𝜏𝜏𝑝𝑝𝑝𝑝

 –
1
2

� 𝑃𝑃𝑎𝑎(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑇𝑇+Δ𝑡𝑡−𝜏𝜏𝑝𝑝𝑝𝑝

𝑇𝑇+Δ𝑡𝑡−𝜏𝜏𝑝𝑝𝑝𝑝−𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

�                            (2) 

where 𝑃𝑃𝑎𝑎(𝑡𝑡) is probability density function for appearance of an afterpulse at time t after a detection 
event. The overall factor ½ stems from the fact that two photons are generated on average per photon 
detection. We note that higher lag coefficients (𝑘𝑘 > 1) are obtained by shifting the boundaries of both 

integrals in Eq. 2 by 𝑇𝑇, that is: 𝑎𝑎𝑘𝑘 = 𝑎𝑎1exp �(𝑘𝑘−1)𝑇𝑇
𝜏𝜏𝑎𝑎

�, that is bit generation is a Markov process and 

correlation among bits can indeed be characterized well by only the serial correlation coefficient with lag 
1, namely 𝑎𝑎1. In case of the SLiK detector, where 𝜏𝜏𝑝𝑝𝑝𝑝 = 8 ns and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22 ns, the net autocorrelation 𝑎𝑎1 
is negative because the integration interval of the second term (of length 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is longer than that of the 
first term (length 𝜏𝜏𝑝𝑝𝑝𝑝) and because 𝑃𝑃𝑎𝑎(𝑡𝑡) is larger in the second integral. However, since the two integrals 
are the contiguous parts of an integral over a fixed interval (of length 𝜏𝜏𝑝𝑝𝑝𝑝 + 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) it could be possible to 
choose 𝜏𝜏𝑝𝑝𝑝𝑝 such that the correlation vanishes. If a simple exponential model of afterpulsing is assumed, 

i.e. 𝑃𝑃𝑎𝑎(𝑡𝑡) =  𝑃𝑃
𝜏𝜏𝑎𝑎
𝑒𝑒−𝑡𝑡/𝜏𝜏𝑎𝑎  [19] where 𝑃𝑃 is the total afterpulsing probability, by requiring 𝑎𝑎1 = 0 one gets: 

𝑒𝑒  
𝜏𝜏𝑝𝑝𝑝𝑝
𝜏𝜏𝑎𝑎 �3 − 𝑒𝑒

𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜏𝜏𝑎𝑎 � = 2                                                                     (3) 

from which 𝜏𝜏𝑝𝑝𝑝𝑝 can be expressed as: 

𝜏𝜏𝑝𝑝𝑝𝑝 = 𝜏𝜏𝑎𝑎ln �
2

3 − 𝑒𝑒
𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝜏𝜏𝑎𝑎

� .                                                                  (4) 
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We note that if 𝑃𝑃 = 0 in Eq. (2) then 𝑎𝑎1 = 0 regardless of all other parameters. Interestingly, there is yet 
another possibility that leads to the same effect: for a hypothetical detector with an overwhelming 
afterpulsing lifetime (i.e. 𝜏𝜏𝑎𝑎 → ∞) Eq. (3) would be satisfied even if 𝑃𝑃 > 0 and any value of 𝜏𝜏𝑝𝑝𝑝𝑝 would be 
optimal. This is because afterpulses would then be virtually randomly distributed over time, like dark 
counts, not correlated to any particular detection and thus not able to cause correlations. However, in 
our realistic, SLiK SPAD based detector diode we have 𝜏𝜏𝑎𝑎 =  33  ns, 𝑃𝑃 =  0.047 and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22 ns. 
Inserting 𝜏𝜏𝑎𝑎 and 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 in Eq. (4) yields 𝜏𝜏𝑝𝑝𝑝𝑝 ≈ 21 ns. Apparently, the value of 𝜏𝜏𝑝𝑝𝑝𝑝 so obtained, is optimal 
for cancelation of 𝑎𝑎1 is independent of T.  

To verify that experimentally, we vary the width of the detector's output pulse at the AQC and a evaluate 
autocorrelation as a function of 𝜏𝜏𝑝𝑝𝑝𝑝 for several bit rates (10 MHz, 15 MHz, 17.5 MHz and 20 MHz). 
Experimental results shown in Fig. 9 indicate that an overall minimum of the autocorrelation is indeed 
obtained for 𝜏𝜏𝑝𝑝𝑝𝑝 ≈  21 ns and that is rather insensitive on the bit rate. 

 
Fig. 9. Serial autocorrelation coefficient a1 as a function of detector's pulse width (𝜏𝜏𝑝𝑝𝑝𝑝), measured 
for a set of bit rates. An overall minimum is obtained for 𝜏𝜏𝑝𝑝𝑝𝑝 ≈ 21 ns. 

We further note that following a detection of a photon at –Δ𝑡𝑡, the detector goes into the dead time and 
therefore afterpulses would contribute to the second integral in Eq. (1) only if its starting range (𝑇𝑇 + Δ𝑡𝑡 −
𝜏𝜏𝑝𝑝𝑝𝑝 − 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is greater than 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, that is: 

𝑇𝑇 > 2𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜏𝜏𝑝𝑝𝑝𝑝 − Δ𝑡𝑡                                                                  (5) 

which corresponds to  bit rate of about 1 𝑇𝑇⁄ < 16 MHz. For higher trigger rates the second integral in Eq. 
(1) would become smaller and the autocorrelation would rise sharply, as indeed observed for bitrates of 
17.5 MHz and 20 MHz.  

After setting 𝜏𝜏𝑝𝑝𝑝𝑝 to the optimal value of 21 ns, correlation coefficient 𝑎𝑎1 has been evaluated again as a 
function of bit generation rates in the range 1-25 MHz. Results displayed in Fig. 7 (filled dots) show a 
significant improvement with respect to the result obtained with the original pulse width of 8 ns (hollow 
dots). The absolute value of 𝑎𝑎1 is less than 1.25 ·10-4 for bit rates all the way up to 20 MHz. At higher rates 
correlation quickly diverges because our simple model fails due to the effects explained above and 
possibly other smaller imperfections not taken into account. 
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In practice Eq. (4) cannot be exactly satisfied for physical devices. It is therefore interesting to investigate 
the sensitivity of autocorrelation to variation of parameters such as detector pulse width (𝜏𝜏𝑝𝑝𝑝𝑝), dead time 
(𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) and bit generation period (𝑇𝑇). By substituting the exponential afterpulsing model in Eq. (2) and 
taking partial derivative of 𝑎𝑎1 with respect to 𝜏𝜏𝑝𝑝𝑝𝑝 we get: 

𝜕𝜕𝑎𝑎1
𝜕𝜕𝜏𝜏𝑝𝑝𝑝𝑝

=
𝑃𝑃

4𝜏𝜏𝑝𝑝𝑝𝑝
�3 − 𝑒𝑒𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝜏𝜏𝑎𝑎⁄ �𝑒𝑒−(𝑇𝑇+∆𝑡𝑡−𝜏𝜏𝑝𝑝𝑝𝑝) 𝜏𝜏𝑎𝑎⁄ .                                           (6) 

Evaluated at 𝜏𝜏𝑝𝑝𝑝𝑝 = 21 ns, for 𝑇𝑇 = 100 ns, 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 22 ns, 𝜏𝜏𝑎𝑎 = 33 ns, Δ𝑡𝑡 = 2 ns and 𝑃𝑃 = 0.047, Eq. (6) 
predicts sensitivity of 𝑎𝑎1 with respect to 𝜏𝜏𝑝𝑝𝑝𝑝 of 32 · 10−6 ns−1 which is indeed in a good agreement with 
the slope of the 10 MHz curve in Fig. 9. Similar analysis for dead time yields a sensitivity of −59 ·
10−6 ns−1, whereas for generation period the variation sensitivity is 0.2 · 10−6 ns−1only. Since the three 
parameters (𝜏𝜏𝑝𝑝𝑝𝑝, 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑇𝑇) can be engineered with high precision and stability on the order of 1 ns, 
randomness quality of the present generator is predominantly affected by stability of bias which is about 
500 · 10−6. We find that serial correlation coefficients 𝑎𝑎𝑘𝑘 with lag 1< 𝑘𝑘 ≤ 64 are consistent with zero 
within statistical error for 𝑇𝑇 = 100 ns and 𝑁𝑁 = 109. This is to be expected since with every lag the 
afterpulsing probability (and consequently the serial correlation) drops roughly by a factor of 
exp(𝑇𝑇/𝜏𝜏𝑎𝑎) ≈ 21, and thus the second and all further serial coefficients are much smaller than our 
statistical error.     

In order to further improve on both the statistical bias and the autocorrelation, one could use the Von 
Neumann extractor [23]. However, while on average it takes a block of 4 bits to generate one corrected 
bit, the time to gather enough bits to generate one corrected bit is not bounded and can span anywhere 
from 4T to infinity. In our case that would result in lowering of the bit production efficiency to only 25% 
and enlargement of the delay between the request and availability of the random bit. Therefore we chose 
an alternative, well known approach, which enabled us to keep the 100% efficiency and bounded latency: 
we built two independent generators of the type shown in Fig. 2, distributed the same trigger signal to 
their inputs and logically XORed their outputs. The XOR gate added another 1.3 ns of propagation delay, 
therefore the delay between the trigger and strobe was enlarged by the same amount, i.e. to 9.8 ns. 
According to [20] XORing two independent random strings each with bias 𝑏𝑏 and autocorrelation 𝑎𝑎1 results 
in a new string with an improved bias 𝑏𝑏′ and autocorrelation 𝑎𝑎1′  : 

𝑏𝑏′ = −2𝑏𝑏2                                                                                (7) 

𝑎𝑎1′ = 𝑎𝑎12 + 8𝑎𝑎1𝑏𝑏2                                                                     (8) 

At 10 Mbit/s (i.e. T = 100 ns) for a single QRNG we measured: 𝑏𝑏 ≤ 5 ∙ 10−4;  𝑎𝑎1 ≤ 5 ∙ 10−5. Higher lag 
correlations were consistent with zero, within statistical errors, as expected in our model. By applying Eqs. 
(7-8) we estimate the upper bounds for the residual bias and autocorrelation of the XORed QRNGs to be: 
|𝑏𝑏′| ≤ 5 ∙ 10−7 and |𝑎𝑎1′ | ≤ 3 ∙ 10−9, respectively. 

In our theoretical model of thus QRNG, illustrated in Fig. 8, there are no deviations from randomness 
other than bias and serial autocorrelation and we saw that coefficients with lag 𝑘𝑘 > 2 contribute to non-
randomness negligibly, both theoretically and as confirmed by measurements. To detect statistically the 
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above imperfections as a 3 sigma effect, one would need to generate at least 1013 bits for bias, and 1018 
for correlation, showing that bias is the leading imperfection. However, afterpulsing is generally more 
complex [19] and there could be other imperfections in the setup that were not accounted for in our 
model, all of which could limit the achievable randomness. 

Results with SLiK-based detectors 

As explained above, in order to arrive to a long sequence of random bits that is statistically 
indistinguishable from a perfectly random one, we may resort to XORing of two independent QRNGs. To 
that end, outputs of two independent and identical QRNGs are built and their outputs XORed. Since the 
XOR gate adds 1.3 ns propagation delay, the overall delay budget (latency) of the XORed SLiK-based QRBGs 
arrives at 𝜏𝜏𝐿𝐿 = (9.8 ±  0.2) ns. This is the delay that has to be set between the Trigger and Strobe. As 
deduced in Ref [35],  XORing two independent Markov processes each with bias 𝑏𝑏 and correlation 𝑎𝑎1 
results in an improved bias: 𝑏𝑏′ = −2𝑏𝑏2  and correlation: 𝑎𝑎1′ = 𝑎𝑎12 + 8𝑎𝑎1𝑏𝑏2. At 10 Mbit/s (or T = 100 ns) 
for a single QRNG we measured: 𝑏𝑏 ≤ 5 ∙ 10−4; |𝑎𝑎1| ≤ 1 ∙ 10−4, from which we conclude that the tandem 
performs: |𝑏𝑏′| ≤ 5 ∙ 10−7 and |𝑎𝑎1′ | ≤ 1.1 ∙ 10−8. At that level, at least ~1013 bits are required to 
statistically detect deviation from randomness which is orders of magnitude more than would be required 
by any conceivable Bell test. A sequence of 109 bits (1000 samples of 1 Mbits) generated by the tandem 
generator at 10 Mbit/s passes NIST's randomness test suite STS-2.1.2 with high scores. Typical results are 
shown in Table 1.  

Statistical test p-value Proportion/Threshold Result 
Frequency 0.784927 994/980 Pass 
Block frequency 0.096578 992/980 Pass 
Cumulative sums 0.767582 997/980 Pass 
Runs 0.775337 995/980 Pass 
LongestRun 0.103138 991/980 Pass 
Rank 0.657933 994/980 Pass 
FFT 0.251837 993/980 Pass 
NonOverlappingTemplate 0.574903 994/980 Pass 
OverlappingTemplate 0.867692 987/980 Pass 
Universal 0.697257 994/980 Pass 
ApproximateEntropy 0.348869 993/980 Pass 
RandomExcursions 0.588541 626/615 Pass 
RandomExcursionsVariant 0.235040 625/615 Pass 
Serial 0.637119 990/980 Pass 
LinearComplexity 0.880145 986/980 Pass 

 
Table 1. Typical results of NIST statistical test suite STS-2.1 for 1000 samples of 1 Mbits generated 
by XORing outputs of two independent QRNGs based on SLiK-based single-photon detector. For 
each statistical test an overall p-value as well as proportion of samples that passed the test versus 
theoretical threshold are given. 
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The test results confirm that indeed this tandem QRBG performs un-distinguishably from perfect 
randomness as long as the shortest time lapse between two bit requests is  >= 100 ns and for string length 
of 109  bits.  

Finally, as an alternative approach to improve randomness, non-overlapping pairs of bits from a single 
QRNG operated at 10 Mbit/s have been XORed. In that case, the resulting bias and correlation are given 
by [20]: 

𝑏𝑏′ ≈ −2𝑏𝑏2 − 𝑎𝑎1 2⁄                                                                  (9) 

𝑎𝑎1′ ≈ 4𝑎𝑎1𝑏𝑏2                                                                             (10) 

which gives 𝑏𝑏′ ≈ −2.6 ∙ 10−6 and 𝑎𝑎1′ ≈ 5 ∙ 10−11. Again, 1000 samples of 1 Mbits have passed NIST test 
suite. The drawback of this approach is halving of the effective bit rate (to 5 Mbits/s) and doubling the 
latency, while the good side is requirement for only one photon detector. 

Results with SUR500-based detector 

We now realize the QRBG shown in Fig. 2 with the second type of detector, namely the one based on 
SUR500 SPAD. In the discussion above we realized that afterpulsing is the dominant effect that generates 
correlations among bits. The main advantage of the detector based on SUR500 is its low and short-lived 
afterpulsing. Because of that, for a long enough bit generating period 𝑇𝑇, probability to encounter an 
afterpulse at the next strobe signal becomes negligible. This intuitive argument, in fact, points out to even 
a third possible solution of Eq. (2) which yields 𝑎𝑎1 = 0. Namely, if 𝑃𝑃𝛼𝛼(𝑡𝑡) tends to 0 when 𝑡𝑡 satisfies: 

𝑡𝑡 > 𝑇𝑇 + Δ𝑡𝑡 − 𝜏𝜏𝑝𝑝𝑝𝑝 − 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                                                                (11) 

then both integrals in Eq. (2) also tend to zero, and the pulse width 𝜏𝜏𝑝𝑝𝑝𝑝 does not matter anymore. In 
practice, the shorter 𝜏𝜏𝑝𝑝𝑝𝑝 the better, since then condition in Eq. (11) is satisfied to a greater extent. For 
practical reasons of clean readout we chose 𝜏𝜏𝑝𝑝𝑝𝑝 = 10 ns. With this setting, random bits have been 
generated upon a periodic trigger with frequency spanning from 1 to 25 MHz in the same manner as for 
the SLiK detector. Obtained autocorrelation coefficient 𝑎𝑎1 shown in Fig. 10 features lower absolute value 
further towards high bit rate end, when compared to the performance of the SLiK-based QRNG shown in 
Fig. 7. On top of that, now we do not need to adjust 𝜏𝜏𝑝𝑝𝑝𝑝 because it does not affect the autocorrelation 
unless it is so large that Eq. (5) is violated, which we confirmed by measurements. According to Eq. (5), 
for 𝜏𝜏𝑝𝑝𝑝𝑝 = 10 ns, we expect that the highest bit generation rate is about 17 MHz. Indeed, we see that after 
that point correlation rises towards positive values, as expected, while above 22 MHz dead time proximity 
(1/𝑇𝑇 ≈ 𝜏𝜏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) starts to cause large anti-correlation and our generator becomes useless. 
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Fig. 10. A series of autocorrelation coefficients 𝑎𝑎1 as a function the triggered bit rate, measured 
for the pulse width 𝜏𝜏𝑝𝑝𝑝𝑝 = 10 ns, for a detector based upon SUR500 SPAD. Statistics per coefficient 
is 109 bits. One sigma error bars are barely visible being roughly equal to the dot size. 

In order to improve on both the bias and the correlation, we generate two sets of 109 random bits at a 
rate of 17 MHz and XOR them bit-by-bit in order to obtain a single string of 109 bit. For a typical string we 
measure: |𝑏𝑏| and |𝑎𝑎𝑘𝑘| for lags 1≤ 𝑘𝑘 ≤ 64 to be consistent with zero within statistical errors of 1.6 ∙ 10−5 
and 3.2 ∙ 10−5 respectively. Table 2 summarizes test results obtained by the NIST test suite of a typical 
string of 109 bits obtained in this manner. 

 

Statistical test p-value Proportion/Threshold Result 
Frequency 0.745908 991/980 Pass 
Block frequency 0.897763 994/980 Pass 
Cumulative sums 0.619590 990/980 Pass 
Runs 0.996996 989/980 Pass 
LongestRun 0.603841 985/980 Pass 
Rank 0.735908 992/980 Pass 
FFT 0.556460 983/980 Pass 
NonOverlappingTemplate 0.474837 990/980 Pass 
OverlappingTemplate 0.643366 986/980 Pass 
Universal 0.834308 990/980 Pass 
ApproximateEntropy 0.932333 987/980 Pass 
RandomExcursions 0.573467 622/614 Pass 
RandomExcursionsVariant 0.499546 620/614 Pass 
Serial 0.765922 996/980 Pass 
LinearComplexity 0.572847 995/980 Pass 

 
Table 2. Typical results of NIST statistical test suite STS-2.1 for 1000 samples of 1 Mbits generated 
by XORing outputs of two independent QRNGs based on SUR500-based single-photon detector. 
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For each statistical test an overall p-value as well as proportion of samples that passed the test 
versus theoretical threshold are given. 

To test possibility to generate high-quality bits with the SUR500-based photon detector, we generate 
a string of 2 ∙ 109 bits at 17 MHz and XOR neighboring bits to arrive to a new string of 109 bits. This 
new string also has bias and serial correlations within statistical errors and passes NIST statistical test, 
confirming that a statistically good random bits can be generated at a pace of 8.5 MHz or every 118 
ns (or more).  

We see that the QRNG realized with SUR500-based detector performs significantly better and faster 
than the one utilizing SLiK diode, allowing bit generation of up to 17 MHz for the (simulated) tandem 
configuration or 8.5 MHz for a configuration with successive bit XORing. We conclude that this 
improvement in performance is solely due to lower afterpulsing of SUR500 SPAD, even though it is 
inferior as single-photon sensor, having only half the quantum efficiency and over two orders of 
magnitude higher dark counts rate than SLiK SPAD. 

Discussion 

A conceptually simple, on-demand optical quantum random number generator is presented that 
simultaneously features: (1) ultra-fast response upon a bit request (9.8 ns), (2) 100% bit generation 
efficiency upon the trigger and (3) in-future-of-request random action. While its characteristics are of 
particular relevance to some applications (such as Bell tests or random logic [25]), it can be used for a 
much wider range of applications. It can deliver random bits at a maximum rate of currently 10 MHz 
featuring very low randomness errors without post-processing. Sources of randomness errors and their 
sensitivity to variations in hardware components have been studied, modeled and shown to be small. In 
comparison, other post-processing free-running QRNGs have achieved 100% efficiency and nanosecond 
scale response by quick sampling of a randomly toggling flip-flop [6], [26], but with all relevant physical 
processes happening hundreds of nanoseconds in the past of the request due to long delays in optical and 
electrical paths or long range correlations among bits. A post-processing-free QRNG based on self-
differencing technique [27] operated at a clock 1.03 GHz delivers bits randomly at an average rate of 4.01 
Mbit/s thus having efficiency of only about 4‰. In a setup having a similar topology to ours [28] a gain-
switched laser diode feeds an asymmetric Mach-Zender interferometer whose output intensity is 
measured by a photodiode and digitized by 8-bit ADC, whereas in [29] an in-future-of-request continuous-
variable QRNG is based on phase diffusion in a laser diode. Both QRNGs feature unavoidable requirement 
for ADC conversion followed by complex post-processing which results in long response times. 
Furthermore, none of the above discussed constructs has been tested random for strings longer than 
~109 bits, which can be too short for applications like Monte Carlo calculations and simulations. For the 
XORed QRNG, assuming the validity of our model, we estimated that randomness imperfections can not 
be statistically detected for a sequence of generated bits shorter than ~1013 bits. A notable success in 
randomness estimation  is achieved in [30] by calculating propagation of min-entropy through privacy 
amplification claiming randomness for strings of up to ~1096 bits, but at the expense of time-consuming 
post-processing and long history of physical events prior to the bit request. Finally, achieved delay 
between a request and availability of random bit in our QRNG is arguably the shortest possible with a 
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given state of technology since only a logically minimal sequence of processes is required to generate one 
bit, namely a light pulse emission followed by a photon detection.  

Further research - next steps 

We have demonstrated that using our concept, one can generate a random bit every 59 ns (or more) with 
a latency below 10 ns. The cost of this generator is two pulsed lasers and two photon detectors per bit, 
which seems high when considered in terms of usual bulk components that we used in this study. On top 
of that, low bias of this QRNG cannot be guaranteed "off the shelf", rather it must be obtained by a careful 
adjustments of each laser or, alternatively, by some kind of electrical auto adjustment via a negative 
feedback loop, that was not demonstrated here.  

While expensive when made with bulk components, thanks to its simplicity, this QRNG seems ideally 
suited for realization on a chip. Namely, recent advances in silicon CMOS-process-based camera chips, 
allow for thousands of independent single-photon counting pixels on a single silicon chip along with all 
required logic circuits and analog amplifiers needed for automatic bias adjustment, thus reducing the 
price for detectors. The need for a large number of lasers can be eliminated by use of a single pulsed laser 
that uniformly illuminates all pixels at the same time.  

The presented bit generating method, in principle, allows for miniaturization of the QRNG to a chip level 
with the existing technology. This would open possibility for wider range of applications.   
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