Priopcenje za javnost povodom opstruiranja financiranja iz EU fondova od strane MZOS-a

PRIOPĆENJE ZA JAVNOST Zagreb, 7. lipnja 2016.

Otvoreno pismo ministru znanosti, obrazovanja i sporta Predragu Šustaru:

Opstruiranjem financiranja iz EU fondova hrvatskih znanstvenih centara izvrsnosti ugrožava se 50 milijuna eura iz strukturnih fondova i radna mjesta za hrvatske znanstvenike – traži se hitna reakcija ministra Šustara!

Pedeset milijuna eura, upitna radna mjesta za čak tri stotine doktoranada i postdoktoranada, te riskiranje penala od Europske komisije, samo su dio crne statistike koja ozbiljno prijeti Republici Hrvatskoj (RH), a odvija se u sjeni problema s kurikularnom reformom.

Deset znanstvenih centara izvrsnosti proglašenih od strane Ministarstva znanosti obrazovanje i sporta (MZOS) tijekom 2014. i 2015. godine na prijedlog Nacionalnog vijeća za znanost, visoko obrazovanje i tehnološki razvoj, posljednjih su nekoliko mjeseci postalo taocem MZOS-a.

Naime, RH se strateški odredila kroz Operativni program (OP) za financiranje Znanstvenih centara izvrsnosti (2014 – 2020), te se prema Operativnom programu očekuje 50 milijuna eura iz Europskog fonda za regionalni razvoj (ERDF) koji bi bili na raspolaganju proglašenim centrima.

Kako bi centri mogli iskoristiti europska sredstva, MZOS je obvezan raspisati natječaj. Prvi indikativni rok za raspisivanje natječaja bio je 31. ožujka, te je pomaknut na 1. lipnja 2016., a natječaj još nije raspisan.

Unatoč brojnim službenim molbama za poštivanjem obveza koje su voditelji Znanstvenih centara izvrsnosti posljednjih mjeseci dostavili ministru Šustaru i premijeru Oreškoviću s upozorenjem da je RH preuzela obvezu te je dužna raspisati planirani natječaj iz strukturnih fondova u sklopu kojih bi se izvršila evaluacija planiranih troškova u okviru pojedinih centara, s današnjim datumom MZOS još uvijek nije aktivirao natječaj Europskog fonda za regionalni razvoj (ERDF) koji bi omogućio povlačenje čak 50 milijuna eura za Znanstvene centre izvrsnosti. Time se ozbiljno ugrožava realizacija znanstvenih aktivnosti proglašenih ZCI-a i gubitak 50 milijuna eura iz EU te zapošljavanje 300 mladih stručnjaka.

Podsjetimo, MZOS je proglasio Znanstvene centre izvrsnosti iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti nakon zahtjevnih kriterija javnog natječaja, uključujući opsežne domaće i međunarodne recenzije i intervjue s voditeljima predloženih centara koji su proveli Agencija za znanost i visoko obrazovanje (AZVO) i Nacionalno vijeće za znanost, visoko obrazovanje i tehnološki razvoj. MZOS je potom temeljem članka 29. stavka 2. Zakona o znanstvenoj djelatnosti i visokom obrazovanju (Narodne novine, broj: 123/2003, 105/2004, 174/2004, 2/2007 – Odluka Ustavnog suda Republike Hrvatske, 46/2007, 45/2009,63/2011,94/2013, 139/13 i 101/2014 – Odluka i Rješenje Ustavnog suda Republike Hrvatske) proglasilo znanstvene centre izvrsnosti RH, čiji su članovi izvrsni hrvatski znanstvenici, među nositeljima međunarodne prepoznatljivosti hrvatske znanosti.

Proces prijave, vrednovanja i odabira centara trajao je tri godine, a Vlada RH je nakon provedenog postupka recenzija uskladila program centara s nacionalnim prioritetima i oni su u skladu sa Strategijom pametne specijalizacije (S3). Ovu Strategiju su više od dvije godine izrađivali brojni eksperti iz javnog i privatnog sektora koji se bave istraživanjem i razvojem, te ju je usvojio Hrvatski sabor i Europska komisija za znanost.

Cilj proglašenja centara je bio omogućiti izvrsnim hrvatskim znanstvenicima i institucijama uvjete za vrhunski istraživački rad kroz stabilno i pojačano financiranje te edukaciju mladih znanstvenika i značajan doprinos gospodarstvu RH.

Slijedom navedenog, proizlazi da se nepoštivanjem zadanih obveza od strane MZOS-a te neprovođenjem preuzetih obveza direktno ugrožavaju nacionalni interesi.

Nažalost, jedan od glavnih protivnika ustroja hrvatskih centara izvrsnosti, kao i od strane Europske komisije usvojene pametne specijalizacije (S3) RH, a koja je jedan od glavnih preduvjeta za povlačenje sredstava iz strukturnih fondova, je pomoćnik ministra za znanost dr. sc. Krešimir Zadro.

Poštovani ministre Šustar, otvorenim pismom javnosti obraćamo Vam se ispred svih Znanstvenih centara izvrsnosti (ZCI) iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti sa zahtjevom da se javno očitujete o razlozima nepoštivanja odluka Vlade RH i neprovođenju usvojenih programa financiranja hrvatskih centara izvrsnosti iz EU fondova te datumu raspisivanja natječaja kako bi se izbjegao crni scenarij.

Vjerujemo da niste spremni potpuno ignorirati izvrsne hrvatske znanstvene skupine i propustiti priliku da se kroz usvojeni program pametne specijalizacije povuku sredstva u iznosu od 50 milijuna eura iz strukturnih fondova.

U situaciji kad se domaća sredstva za znanost i istraživanje sustavno režu, kad se događa egzodus najboljih mladih obrazovanih stručnjaka, znanstvena istraživanja i inovacije preživljavaju velikim dijelom zbog izvrsnosti istraživačkih skupina i velikih napora znanstvenika u povlačenju sredstva iz programa Europske unije, ovakvo opstruiranje rada Znanstvenih centara izvrsnosti da osiguraju europska sredstva za rad i zapošljavanje stručnog kadra je nedopustivo!

S poštovanjem,
voditelji proglašenih Znanstvenih centara izvrsnosti (STEM područja):

Znanstveni centar izvrsnosti za napredne materijale i senzore,
Institut Ruđer Bošković i Institut za fiziku, Zagreb

Dr. sc. Milko Jakšić – Milko.Jaksic@irb.hr
Dr. sc. Mile Ivanda – Mile.Ivanda@irb.hr
Dr. sc. Mario Stipčević – Mario.Stipcevic@irb.hr
Dr. sc. Marko Kralj – mkralj@ifs.hr

Znanstveni centar izvrsnosti za reproduktivnu i regenerativnu medicinu,

Medicinski fakultet, Sveučilište u Zagrebu,
Akademik prof. dr.sc. Slobodan Vukičević – slobodan.vukicevic@mef.hr
Prof. dr. sc. Davor Ježek – davor.jezek@mef.hr

Znanstveni centar izvrsnosti za virusnu imunologiju i cjepiva,
Medicinski fakultet, Sveučilište u Rijeci
Prof. dr. sc. Stipan Jonjić – stipan.jonjic@medri.uniri.hr

Znanstveni centar izvrsnosti za znanost i tehnologiju – STIM, Sveučilište u Splitu
Prof. dr. dr. h.c. Vlasta Bonačić-Koutecky – vbk@cms.hu-berlin.de

Znanstveni centar izvrsnosti za bioraznolikost i molekularno oplemenjivanje bilja, Agronomski fakultet , Sveučilište u Zagrebu
Prof. dr. sc. Zlatko Šatović – zsatovic@agr.hr

Znanstveni centar izvrsnosti za bioprospecting mora
Institut Ruđer Bošković, Zagreb
Dr.sc. Rozelindra Čož-Rakovac – Rozelindra.Coz-Rakovac@irb.hr

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu

Prof.dr.sc Hrvoje Buljan – hbuljan@phy.hr
Prof. dr. sc. Pavle Pandžić – pandzic@math.hr

Znanstveni centar izvrsnosti za personaliziranu brigu o zdravlju,

Sveučilište Josip Juraj Strossmayer u Osijeku
Prof. dr. sc. Gordan Lauc – glauc@pharma.hr
Prof. dr. sc. Ines Drenjančević – ines.drenjancevic.peric@mefos.hr

Znanstveni centar izvrsnosti za temeljnu, kliničku i translacijsku neuroznanost, Medicinski fakultet, Sveučilište u Zagrebu
Prof. dr. sc. Miloš Judaš – mjudas@hiim.hr

Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu

Prof.dr.sc. Sven Lončarić – sven.loncaric@fer.hr
Prof. dr. sc. Ivan Petrović – ivan.petrovic@fer.hr

Priopćenje voditelja proglašenih
            Znanstvenih centara izvrsnosti (STEM područja)             ___________________________________________________________________________________________________

Manipulacija makroskopskih uzoraka nano-strukturiranog grafena

Nano-naborani grafen je strukturno modificirani grafen sa širokim rasponom mogućih primjena koje uključuju senzore, elektrode, optoelektroniku, spintroniku i straintroniku. U članku objavljenom u časopisu Carbon 96 (2016) 243, I. Šrut Rakić i M. Kralj s Instituta za fiziku, zajedno s D. Čapetom (PMF) i M. Plodinecem (IRB) pokazali su da je moguće sintetizirati makroskopske grafenske uzorke s dobro definiranom uniaksijalnom modulacijom na vicinalnoj metalnoj površini, te takav grafen transferirati na dielektričnu podlogu ne gubeći pritom njegovu nano-naboranu strukturu.

Transfer schematics

Slika 1. (a)-(d) Shematski prikaz koraka u proceduri transfera grafena. (e) Fotografija Ir(332) kristala pokrivenog monoslojem grafena nakon što je uzorak izvađen iz ultravisokog vakuuma. (f) Fotografija eksperimentalnog postava za “bubbling” transfer. (g) Slika uzorka s optičkog mikroskopa (x80 povećanje) tijekom “under-potential” tretmana. Slika u umetku pokazuje povećano područje označeno s crnim pravokutnikom gdje je vidljiva interkalacijska fronta označena strelicom. (h) Fotografija grafena nakon transfera na Si/SiO2.

Strukturno modificirani grafen je nedavno došao u fokus istraživanja kao materijal koji obećava proširivanje spektra mogućih grafenskih primjena. Ključno obilježje takvih sistema je zakrivljenost grafena koju tipično slijedi i prisustvo naprezanja. Naprezanje ima značajan utjecaj na grafensku elektronsku strukturu, vodljivost, optički odgovor te čak i na spinski transport, što se, koristeći naborani grafen, može iskoristiti za izradu ciljanih optoelektroničkih, spintroničkih ili generalno naprezanjem omogućenih elektroničkih sklopova (straintronika). Osim toga, svojstva naboranog grafena mogu se iskoristiti za razne senzore, elektrode, premaze te čak i za pohranu vodika. Važno je stoga moći napraviti uređaje i sklopove bazirane na naboranom grafenu sa dobro definiranom uniaksijalnom, 1D, periodičnom modulacijom. Ključ u izradi takvih sklopova leži u mogućnosti sinteze i transfera strukturno modificiranog grafena na željenu podlogu od interesa.

SPM karakterizacija

Slika 2. (a) – (d) AFM topografije snimljene na nekoliko područja na uzorku. (e) Fourierov transformat slike 2.(c) koji potvrđuje 1D uređenje s periodičnošću od 67 nm. (f) AFM linijski profil koji odgovara zelenoj liniji na slici (d). Slika u umetku pokazuje pojednostavljeni model presjeka nabora korišten za račun naprezanja.

U ovom radu pokazano je da je moguće narasti periodički nano-naborani grafen na skali od nekoliko milimetara koristeći prestrukturiranu podlogu stepenastog Ir(332). Autori su transferirali takav 1D modulirani grafen na Si/SiO2 podlogu koristeći prilagođenu metodu transfera zvanu “bubbling” (Slika 1). Ključno otkriće nakon transfera došlo je iz karakterizacije uzorka mikroskopom atomskih sila (AFM) gdje su pokazali da je grafen zadržao svoju originalnu periodičnu, 1D, naboranu strukturu (Slika 2). Prisustvo uniaksijalnog naprezanja je dodatno potvrđeno prilagodbom Ramanove spektroskopije za polarizirana mjerenja gdje se laserska polarizacija kontrolirano rotira u odnosu na makroskopski smjer nabora u grafenu. Pri tome je moguće razlučiti napregnuti i nenapregnuti smjer u grafenu (Slika 3).

Raman karakterizacija

Slika 3. (a) Raman spektar uzorka grafena na Si/ SiO2 snimljen koristeći nepolarizirano lasersko svjetlo. (b) Shematski model Raman mjerenja s polariziranim laserskim svjetlom. Crna strelica označava smjer laserske polarizacije dok plava označava smjer grafenskih nabora. (c) Polarni prikaz pozicije 2D vrha u odnosu na kut polarizacije lasera. (d) Raman spektar grafenskog 2D vrha za dva kuta laserske polarizacije međusobno pomaknutih za 90°.

Način pripremanja naboranog grafena na željenoj podlozi, predstavljen u ovom članku, može se smatrati kao metoda pečata gdje se prvo grafen strukturira izborom adekvatne podloge za rast te se potom prenese na bilo koju drugu podlogu, stvarajući tako uređaj za željenu primjenu. Sama procedura transfera je brza i rezultira grafenom s uniformnim smjerom nabora, pri čemu je veličina dobivenog grafena ograničena jedino veličinom korištene podloge kristala iridija. Prednost u korištenju stepeničastog Ir leži u tome da taj sustav nudi poželjnu mogućnost kontrole periodičnosti nabora i orijentacije grafena naspram smjera nabora, te osigurava da je grafen uvijek debeo samo jedan atomski sloj. Sve to je iznimno važno za potencijalne primjene.

Ovaj rad čini značajno postignuće za CEMS u smislu međuinstitutske suradnje i upotrebe grafena na velikoj skali.

Nabori grafena na mikro- i nano-skali

Sadržaj nije dostupan na hrvatskom For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Epitaxial graphene, considered by many as the best source of graphene for various technological applications, contains various type of defects which deteriorate its intrinsic, superior properties. The prominent defects are graphene wrinkles which are the subject of our work published in Carbon (journal IF = 6.196) this July [Carbon 94 (2015) 856-863] by M. Petrović (Institute of Physics), J.T. Sadowski (CFN BNL, USA), together with A. Šiber and M. Kralj from CEMS/G2D.

Some of the main characteristics of epitaxial graphene on metal substrates are its uniformity and high structural quality. However, due to the high synthesis temperatures and practically negligible coefficient of thermal expansion of graphene, cooling to room temperature induces stress in graphene layer. The stress is relaxed in the form of wrinkles which represent deformations of the otherwise planar graphene lattice and as such affect many properties of graphene, e.g. electrical and thermal conductivity, optical transmittance and chemical reactivity. In addition, wrinkles play a major role in graphene intercalation which is often utilized for the creation of hybrid graphene systems. Therefore, a thorough understanding of graphene wrinkles is important for potential applications of graphene.

LEEM characterizaton

(a) LEEM image of graphene’s wrinkle network, (b) Fourier transform of (a) exhibiting hexagonal symmetry, (c) polar plot of radial sums extracted from (b) and (d) illustration of graphene (orange) on Ir(111) (gray balls) with marked directions of wrinkle extension (yellow).

In the paper published in Carbon, micro- and nano-characterization of wrinkles of graphene synthesized on the iridium (111) surface has been performed. The low-energy electron microscopy (LEEM) and scanning tunneling microscopy (STM ) were used for experimental measurements and a simple analytic model was utilized for the understanding of the wrinkles’ energetics. It is shown that wrinkles, having lengths of the order of micrometers, interconnect in an ordered quasi-hexagonal network which is aligned with the substrate (see left figure). The network can be mathematically described with the aid of Voronoi diagrams, which significantly facilitates its parameterization. Also, a new model is proposed which accounts for the observed changes in the electron reflectivity of graphene and relates it to the local relaxation of the graphene lattice during wrinkle formation.

Fig2_Carbon

STM image of (a) topography and (b) first derivative of topography of graphene wrinkle and (c) wrinkle profile marked by red line in (a). Four lobes constituting the wrinkle can be identified.

Moreover, it is determined that structural details of graphene and iridium (e.g. dirt particles and already formed wrinkles) can act as nucleation centers for the formation of new wrinkles. At the nano-scale, individual wrinkles are composed of several lobes (see right figure) which result from the system frustration which is induced during cooldown from high synthesis temperatures. In terms of energy, the number of lobes is determined by the competition of the van der Waals binding acting between graphene and iridium and the graphene bending energy. Overall, this study provides new insights into graphene wrinkles and their network as a whole, which makes it relevant for future development of devices based on graphene as well as on other 2D materials.

Featured illustration by Marin Petrović.

Oprema

Sadržaj nije dostupan na hrvatskom For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

@Institute of Physics

G2Dcorridor_20151125_6

Corridor in the second wing of the Institute of Physics hosting several G2D labs and offices: 122/II-125/II, 132/II-135/II.

Institute of Physics (IFZ) is the G2D unit of CEMS host institution. The expertise from members at IFZ (solid state physics, surface science, biological physics, atomic, molecular, optical and plasma physics) secures accessibility of capital equipment existing at IFZ in particular the core team members labs: scanning probe techniques STM and AFM under ambient and in vacuum, photoelectron spectroscopy and electron diffraction in vacuum, SAXS/GISAXS X-ray techniques, bio and planar sample fabrication, dielectric spectroscopy, flourescence correlation spectroscopy, femtosecond laser spectroscopy, …

@Ruđer Bošković and Physics Department

The versatility of expertise at IFZ is complemented by the equipment in labs of core members from Ruđer Bošković Institute and Physics Department at Faculty of Science: Raman spectroscopy, scanning and transmission electron microscopy, RBI accelerator facility, GISAX and its modelling, magnetron sputtering, mechanochemistry lab, computational infrastructure, …

@New capital equipment

The aim of the G2D unit is to modernize and upgrade equipment across the teams and in particular to develop new labs which will add value to the joined expertise of team members. The main two new labs to be established within the G2D unit: (1) The “CVD Lab”, based on ~2-3 inch diameter variable pressure CVD furnace and accessories, will enable us routine synthesis of large amounts of monolayer samples, which at the moment we synthesize on smaller scale below 1 inch; (2) “Laboratory for Extreme Mechanics” will enable us to study elasticity phenomena and processes intrinsic to graphene and other (macroscopically) elastic materials.

Radovi i prezentacije

Radovi

M. Kralj, Intercalated boosters,  Nature Physics 11 (2015) 11–12

J. Feng, K. Liu, M. Graf, M. Lihter, R. D. Bulushev, D. Dumcenco, D.T.L. Alexander, D. Krasnozhon, T. Vuletić, A. Kis, A. Radenovic, Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom // Nano Letters 15 (2015) 3431–3438

T. Borzda, C. Gadermaier, N. Vujičić, et al., Charge Photogeneration in Few-Layer MoS2 // Advanced Functional Materials 25 (2015) 3351–3358

M. Petrović, J.T. Sadowski, A. Šiber, M. Kralj, Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structure //  Carbon 94 (2015) 856–863

Self-assembly of Ge quantum dots on periodically corrugated Si surfaces, M. Buljan, S. Facsko, I. Delač Marion, V. Mikšić Trontl, M. Kralj, M. Jerčinović, C. Baehtz, A. Muecklich, V. Holy, N. Radić, J. Grenzer // Applied Physics Letters 107 (2015) 203101

I. Šrut Rakić, D. Čapeta, M. Plodinec, and M. Kralj, Large-scale transfer and characterization of macroscopic periodically nano-rippled graphene // Carbon 96, 243–249 (2016)

I. Šrut Rakić, M. Kralj, W. Jolie, P. Lazić, W. Sun, J. Avila, M.-C. Asensio, F. Craes, V. Mikšić Trontl, C. Busse, and P. Pervan, Step-induced faceting and related electronic effects for graphene on Ir(332) // Carbon 110, 267–277 (2016)

F. H. Farwick zum Hagen, D. M. Zimmermann, C. C. Silva, C. Schlueter, N. Atodiresei, W. Jolie, A. J. Martínez-Galera, D. Dombrowski, U. A. Schröder, M. Will, P. Lazić, V. Caciuc, S. Blügel, T.-L. Lee, T. Michely, and C. Busse, Structure and Growth of Hexagonal Boron Nitride on Ir(111) // ACS Nano 10, 11012–11026 (2016)

P. Lazić, K. D. Belashchenko, and I. Žutić, Effective gating and tunable magnetic proximity effects in two-dimensional heterostructures // Physical Review B 93, 241401 (2016)

D. Vella, V. Vega-Mayoral, C. Gadermaier, N. Vujičić, T. Borzda, P. Topolovsek, M. Prijatelj, I. Tempra, E. A. A. Pogna, and G. Cerullo, Femtosecond spectroscopy on MoS2 flakes from liquid exfoliation: surfactant independent exciton dynamics // Journal of Nanophotonics 10, 012508 (2016)

T. Car, N. Nekić, M. Jerčinović, K. Salamon, I. Bogdanović-Radović, I. Delač Marion, J. Dasović, G. Dražić, M. Ivanda, and S. Bernstorff, Closely packed Ge quantum dots in ITO matrix: influence of Ge crystallization on optical and electrical properties // Materials Research Express 3, 065003 (2016)

V. Vega-Mayoral, D. Vella, T. Borzda, M. Prijatelj, I. Tempra, E. A. A. Pogna, S. Dal Conte, P. Topolovsek, N. Vujičić, G. Cerullo, D. Mihailovic, and C. Gadermaier, Exciton and charge carrier dynamics in few-layer WS2 // Nanoscale 8, 5428–5434 (2016)

A. Šiber, Shapes of minimal-energy DNA ropes condensed in confinement, Scientific Reports 6 // 29012 (2016)

I. Kaminer, Y. Tenenbaum Katan, H. Buljan, Y. Shen, O. Ilic, J. J. Lopez, L. J. Wong, J. D. Joannopoulos, and M. Soljačić, Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene // Nature Communications 7, 11880 (2016)

U.A. Schroeder, M. Petrović, T. Gerber, A.J. Martinez-Galera, E. Granas, M.A. Arman, C. Herbig, J. Schnadt, M. Kralj, J. Knudsen, and T. Michely, Core level shifts of intercalated graphene // 2D Materials 4, 015013 (2017)

D. Dombrowski, W. Jolie, M. Petrovic, S. Runte, F. Craes, J. Klinkhammer, M. Kralj, P. Lazic, E. Sela, C. Busse, Energy dependent chirality effects in quasi free-standing graphene // Physical Review Letters 118, 116401 (2017)

M Petrović, U Hagemann, M Horn-von Hoegen, FJM zu Heringdorf, Microanalysis of single-layer hexagonal boron nitride islands on Ir (111) // Applied Surface Science 420, 504 (2017)

M. Petrović, P. Lazic, S. Runte, T. Michely, C. Busse, M. Kralj, Moire-regulated self-assembly of cesium adatoms on epitaxial graphene // Physical Review B 96, 085428, (2017)

J.M. Marmolejo-Tejada, K Dolui, P Lazić, P.H. Chang, S Smidstrup, D Stradi, K. Stokbro, B.K. Nikolic, Proximity band structure and spin textures on both sides of topological-insulator/ferromagnetic-metal interface and their charge transport probes // Nano Letters 17, 5626-5633 (2017)

X Lin, I Kaminer, X Shi, F Gao, Z Yang, Z Gao, H Buljan, JD Joannopoulos, M. Soljačić, H. Chen, B. Zhang, Splashing transients of 2D plasmons launched by swift electrons // Science advances 3, e1601192 (2017)

J. Hall, B. Pielić, C. Murray, W. Jolie, T. Wekking, C. Busse, M. Kralj, T. Michely, Molecular beam epitaxy of quasi-freestanding transition metal disulphide monolayers on van der Waals substrates: A growth study // 2D Materials 5, 025005 (2018)

N. Saigal, I. Wielert, D. Čapeta, N. Vujičić, B.V. Senkovskiy, M. Hell, M. Kralj, and A. Grüneis, Effect of lithium doping on the optical properties of monolayer MoS2 // Appl. Phys. Lett. 112, 121902 (2018)

I. Niehues, A. Blob, T. Stiehm, R. Schmidt, V. Jadriško, B. Radatović, D. Čapeta, M. Kralj, S. Michaelis de Vasconcellos, and R. Bratschitsch, Strain transfer across grain boundaries in MoS2 monolayers grown by chemical vapor deposition // 2D Materials 5, 031003 (2018)

T. Klačić, K. Varga, M. Kralj, I. Delač Marion, H. Vančik, and I. Biljan, Insights into the self-assembly of aromatic dinitroso derivatives on gold surface // Colloids and Surfaces A 552, 110–117 (2018)

I. Delač Marion, D. Čapeta, B. Pielić, F. Faraguna, A. Gallardo, P. Pou, B. Biel, N. Vujičić, and M. Kralj, Atomic-scale defects and electronic properties of a transferred synthesized MoS2 monolayer // Nanotechnology 29, 305703 (2018)

H. Yang, H. Guan, N. Biekert, G. Arefe, D.C. Chang, Y. Sun, P-C. Yeh, X. Liu, S-Y. Hong, I. Delač Marion, M. Kralj, J.C. Hone, R.M. Osgood, Jr., and J.I. Dadap, Layer dependence of third-harmonic generation in thick multilayer graphene // Physical Review Materials 2, 071002(R) (2018)

J. Cai, W. Jolie, C.C. Silva, M. Petrović, C. Schlueter, T. Michely, M. Kralj, T-L. Lee, C. Busse, Modifying the geometric and electronic structure of hexagonal boron nitride on Ir(111) by Cs adsorption and intercalation // Physical Review B 98, 195443 (2018)

M. Petrović, M. Horn-von Hoegen, F.-J. Meyer zu Heringdorf, Lateral heterostructures of hexagonal boron nitride and graphene: BCN alloy formation and microstructuring mechanism // Applied Surface Science 455, 1086 (2018)

P. Lazić, M. Pinterić, D. Rivas Góngora, A. Pustogow, K. Treptow, T. Ivek, O. Milat, B. Gumhalter, N. Došlić, M. Dressel, and S. Tomić, Importance of van der Waals interactions and cation-anion coupling in an organic quantum spin liquid // Physical Review B 97, 245134 (2018)

J. Feng, H. Deschout, S. Caneva, S. Hofmann, I. Lončarić, P. Lazić, A. Radenovic, Imaging of Optically Active Defects with Nanometer Resolution // Nano Letters 18, 1739-1744 (2018)

M. Plodinec, I. Grčić, M. G. Willinger, A. Hammud, X. Huang, I. Panžić, A. Gajović, Black TiO2 nanotube arrays decorated with Ag nanoparticles for enhanced visible-light photocatalytic oxidation of salicylic acid // Journal of Alloys and Compounds 776, 883-896 (2018)

S. Lukin, M. Tireli, I. Lončarić, D. Barišić, P. Šket, D. Vrsaljko, M. di Michiel, J. Plavec, K. Užarević, I. Halasz, Mechanochemical carbon–carbon bond formation that proceeds via a cocrystal intermediate // Chemical Communications 54, 13216-13219 (2018)

D.Novko, Nonadiabatic coupling effects in MgB2 reexamined // Physical Review B 98, 041112(R) (2018)

S.A. Mezzasalma, V. Janicki, K. Salamon, J. Sancho‐Parramon, Combination Law for Drude–Sommerfeld’s Electron Damping in Multilayer Thin Metal Films // Physica Status Solidi (RRL) 12, 1800149 (2018)

N. Krstulović, K. Salamon, O. Budimlija, J. Kovač, J. Dasović, P. Umek, I. Capan, Parameters optimization for synthesis of Al-doped ZnO nanoparticles by laser ablation in water // Applied Surface Science 440, 916-925 (2018)

A. Lošdorfer Božič, A. Šiber, Electrostatics-Driven Inflation of Elastic Icosahedral Shells as a Model for Swelling of Viruses // Biophysical Journal 115, 822 (2018)

D. Novko, J. C. Tremblay, M. Alducin, and J. I. Juaristi, Ultrafast Transient Dynamics of Adsorbates on Surfaces Deciphered: The Case of CO on Cu(100) // Phys. Rev. Lett. 122, 016806 (2019).

I. Lončarić, M. Alducin, J. I. Juaristi, and D. Novko, CO Stretch Vibration Lives Long on Au(111) // J. Phys. Chem. Lett. 10, 1043 (2019).

D. Novko, Q. Zhang, and P. Kaghazchi, Nonadiabatic Effects in Raman Spectra of AlCl−4-graphite Based Batteries // Phys. Rev. Applied 12, 024016 (2019).

V. Despoja, D. Novko, I. Lončarić, N. Golenić, L. Marušić, and V. M. Silkin, Strong acoustic plasmons in chemically doped graphene induced by a nearby metal surface // Phys. Rev. B 100, 195401 (2019).

D. Novko, M. Kralj. Phonon-assisted processes in the ultraviolet-transient optical response of graphene // npj 2D Materials and Applications 3, 48 (2019).

S. Pecqueur, I. Lončarić, V. Zlatić, D. Vuillaume and Ž. Crljen, The non-ideal organic electrochemical transistors impedance // Org. Electron. 71, 14–23 (2019).

E. Mervinetsky, I. Alshanski, J. Buchwald, A. Dianat, I. Lončarić, P. Lazić, Ž. Crljen, R. Gutierrez, G. Cuniberti, M. Hurevich and S. Yitzchaik, Direct Assembly and Metal-Ion Binding Properties of Oxytocin Monolayer on Gold Surfaces // Langmuir 35, 11114–11122 (2019).

L. Kanižaj, K. Molčanov, F. Torić, D. Pajić, I. Lončarić, A. Šantić and M. Jurić, Ladder-like [CrCu] coordination polymers containing unique bridging modes of [Cr(C 2 O 4 ) 3 ] 3− and Cr 2 O 7 2− // Dalt. Trans. 48, 7891–7898 (2019).

B. Karadeniz, D. Žilić, I. Huskić, L. S. Germann, A. M. Fidelli, S. Muratović, I. Lončarić, M. Etter, R. E. Dinnebier, D. Barišić, N. Cindro, T. Islamoglu, O. K. Farha, T. Friščić and K. Užarević, Controlling the Polymorphism and Topology Transformation in Porphyrinic Zirconium Metal–Organic Frameworks via Mechanochemistry // J. Am. Chem. Soc. 141, 19214–19220 (2019).

T. L. Leung, H. W. Tam, F. Z. Liu, J. Y. Lin, A. M. C. Ng, W. K. Chan, W. Chen, Z. B. He, I. Lončarić, L. Grisanti, C. Ma, K. S. Wong, Y. S. Lau, F. R. Zhu, Ž. Skoko, J. Popović, A. B. Djurišić, Mixed Spacer Cation Stabilization of Blue-Emitting n=2 Ruddlesden–Popper Organic-Inorganic Halide Perovskite Films // Adv. Opt. Mater, 1901679 (2019).

R. Scholz, S. Lindner, I. Lončarić, J.C. Tremblay, J.I. Juaristi, M. Alducin, P. Saalfrank, Vibrational response and motion of carbon monoxide on Cu(100) driven by femtosecond laser pulses: Molecular dynamics with electronic friction // Phys. Rev. B 100, 245431 (2019).

M. Petrović, M. Horn-von Hoegen, F.-J. Meyer zu Heringdorf. Equilibrium shape of single-layer hexagonal boron nitride islands on iridium // Scientific Reports 9, 19553 (2019).

A. Selmani, J. Lützenkirchen, K. Kučanda, D. Dabić, E. Redel, I. Delač Marion, D. Kralj, D Domazet Jurašin, M. Dutour Sikirić, Tailoring the stability/aggregation of one- dimensional TiO2(B)/titanate nanowires using surfactants // Beilstein Journal of Nanotechnology 10, 1024-1037 (2019)

A. Jurov, D. Popović, I. Šrut Rakić, I. Delač Marion, G. Filipič, J. Kovač, U. Cvelbar, N. Krstulović, Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications // International journal of Advanced Manufacturing Technology 101, 927-938 (2019)

N. Martín-González, M. Hernando-Pérez, G.N. Condezo, M. PérezIllana, A. Šiber, D. Reguera, P. Ostapchuk, P. Hearing, C. San Martín, P. J. de Pablo, Adenovirus major core protein condenses DNA in clusters and bundles, modulating genome release and capsid internal pressure // Nucl. Acids Res. 47, 9231 (2019).

M. Kokalj Ladan, P. Ziherl, A. Šiber, Topology of dividing planar tilings: Mitosis and order in epithelial tissues // Phys. Rev. E 100, 012410 (2019)

K Salamon, P Dubček, G Dražić, S Bernstorff, N Radić, Lateral inhomogeneities in W/C multilayer mirrors // Thin Solid Films 691, 137611 (2019)

L Basioli, K Salamon, M Tkalčević, I Mekterović, S Bernstorff, M Mičetić, Application of GISAXS in the Investigation of Three-Dimensional Lattices of Nanostructures // Crystals 9, 479 (2019)

N. Nekić, I. Šarić, K. Salamon, L. Basioli, J. Sancho-Parramon, J. Grenzer, R. Hübner, S. Bernstorff, M. Petravić, M. Mičetić, Preparation of non-oxidized Ge quantum dot lattices in amorphous Al2O3, Si3N4 and SiC matrices // Nanotechnology 30, 335601 (2019)

K Salamon, M Mičetić, J Sancho-Parramon, I Bogdanović Radović, Z Siketić, I Šarić, M Petravić, S Bernstorff, β-TaON thin films: production by reactive magnetron sputtering and the question of non-stoichiometry // J. Phys. D: Appl. Phys. 52, 305304 (2019)

J Sancho-Parramon, B Okorn, K Salamon, V Janicki, Plasmonic resonances in copper island films // Applied Surface Science 463, 847-853 (2019)

I. Panžić, K. Juraić, N. Krstulović, A. Šantić, D. Belić, D. Blažeka, M. Plodinec, V. Mandić, J. Macan, A. Hammud, D. Ivanov, J. Plaisier, M. G. Willinger, D. Gracin, A. Gajović, ZnO@ TiO2 Core Shell Nanorod Arrays with Tailored Structural, Electrical, and Optical Properties for Photovoltaic Application // Molecules 24, 3965 (2019)

M. Plodinec, I. Grčić, M. G. Willinger, A. Hammud, X. Huang, I. Panžić, A. Gajović, Black TiO2 nanotube arrays decorated with Ag nanoparticles for enhanced visible-light photocatalytic oxidation of salicylic acid // Journal of Alloys and Compounds 776, 883-896 (2019)

J. Macan, M. Ivanko, I. Bukovčan, I. Grčić, A. Gajović, Stable hierarchical ZnO structures for photocatalytic degradation of 2, 5-dihydroxybenzoic acid // Materials Science in Semiconductor Processing 97, 48-55 (2019)

Z. Torbatian, D. Novko, R. Asgari, Tunable low-loss hyperbolic plasmon polaritons in a Td-WTe2 single layer // Phys. Rev. Applied 14, 044014 (2020).

Z. Torbatian, M. Alidoosti, D. Novko, R. Asgari, Low-loss two-dimensional plasmon modes in antimonene // Phys. Rev. B 101, 20541 (2020).

D. Novko, F. Caruso, C. Draxl, E. Cappelluti Ultrafast Hot Phonon Dynamics in MgB2 Driven by Anisotropic Electron-Phonon Coupling // Phys. Rev. Lett. 124, 077001 (2020).

D. Novko, Broken adiabaticity induced by Lifshitz transition in MoS2 and WS2 single layers // Commun. Phys. 3, 30 (2020).

F. Caruso, D. Novko, C. Draxl, Photoemission signatures of nonequilibrium carrier dynamics from first principles // Phys. Rev. B 101, 035128 (2020).

T.L. Leung, H.W. Tam, F. Liu, J. Lin, A.M.C. Ng, W.K. Chan, W. Chen, Z. He, I. Lončarić, L. Grisanti, Mixed Spacer Cation Stabilization of Blue‐Emitting n= 2 Ruddlesden–Popper Organic–Inorganic Halide Perovskite Films // Advanced Optical Materials, 8, 1901679, (2020).

Y. Yuan, K. Sheng, S. Zeng, X. Han, L. Sun, I. Lončarić, W. Zhan, D. Sun, Engineering Cu/TiO2@ N-Doped C Interfaces Derived from an Atom-Precise Heterometallic CuII4TiIV5 Cluster for Efficient Photocatalytic Hydrogen Evolution // Inorganic Chemistry, 59, 8, 5456-5462, (2020).

H.W. Tam, T.K. Leung, W. Sun, F. Liu, C. Ma, K.S. Wong, I. Lončarić, L. Grisanti, J. Ovčar, Ž. Skoko, Phase control for quasi-2D blue emitters by spacer cation engineering // Journal of Materials Chemistry C, 8, 11052-11060, (2020).

S. Lukin, T. Stolar, I. Lončarić, I. Milanović, N. Biliškov, M. di Michiel, T. Friščić, I. Halasz, Mechanochemical Metathesis between AgNO3 and NaX (X= Cl, Br, I) and Ag2XNO3 Double-Salt Formation // Inorganic Chemistry, 59, 17, 12200–12208, (2020).

M. Bosnar, V. Caciuc, N. Atodiresei, I. Lončarić, S. Blügel, Se intercalation between PtSe2 and Pt surface in synthesis of PtSe2 by direct selenization of Pt surface // Physical Review B 102, 115427 (2020).

M. Bosnar, I. Lončarić, P. Lazić, K.D. Belashchenko, I. Žutić, Proximity-induced magnetization in graphene: Towards efficient spin gating // Physical Review Materials 4, 114006 (2020).

L. Kanižaj, D. Barišić, F. Torić, D. Pajić, K. Molčanov, A. Šantić, I. Lončarić, M. Jurić, Structural, Electrical, and Magnetic Versatility of the Oxalate-Based [CuFe] Compounds Containing 2,2′:6′,2″-Terpyridine: Anion-Directed Synthesis // Inorganic Chemistry 59, 18078–18089 (2020).

V. Martinez, B. Karadeniz, N. Biliškov, I. Lončarić, S. Muratović, D. Žilić, S.M. Avdoshenko, M. Roslova, A.A. Popov, K. Užarević, Tunable Fulleretic Sodalite MOFs: Highly Efficient and Controllable Entrapment of C60 Fullerene via Mechanochemistry // Chemistry of Materials 32, 10628–10640 (2020).

S. Tanaka, T. Yoshida, K. Watanabe, Y. Matsumoto, T. Yasuike, M. Petrović, M. Kralj, Linewidth Narrowing with Ultimate Confinement of an Alkali Multipole Plasmon by Modifying Surface Electronic Wave Functions with Two-Dimensional Materials // Physical Review Letters 125, 126802 (2020).

T. Yoshida, K. Watanabe, M. Petrović, and Marko Kralj, Anomalous temperature Dependence of Exciton Spectral Diffusion in Tetracene Thin Film // The Journal of Physical Chemistry Letters 11, 5248 (2020).

B. Pielić, J. Hall, V. Despoja, I. Šrut Rakić, M. Petrović, A. Sohani, C. Busse, T. Michely, M. Kralj, Sulfur structures on bare and graphene-covered Ir(111) // The Journal of Physical Chemistry C 124, 6659 (2020).

T. Hartl, M. Will, D. Čapeta, R. Singh, D. Scheinecker, V.B. de la Cruz, S. Dellmann, P. Lacovig, S. Lizzit, B.V. Senkovskiy, A. Grüneis, M. Kralj, J. Knudsen, J. Kotakoski, T. Michely, P. Bampoulis, Cluster Superlattice Membranes // ACS Nano 14, 13629-13637 (2020).

I. Grčić, A. Gajović, M. Plodinec, K. Šimunković, H. Ivanković, M.-G. Willinger, Enhanced Visible-Light Driven Photocatalytic Activity of Ag@TiO2 Photocatalyst Prepared in Chitosan Matrix // Catalysts 10(7), 763 (2020).

T. Čižmar, V. Kojić, M. Rukavina, L. Brkljačić, K. Salamon, I. Grčić, L. Radetić, A. Gajović, Hydrothermal Synthesis of FeOOH and Fe2O3 Modified Self-Organizing Immobilized TiO2 Nanotubes for Photocatalytic Degradation of 1H-Benzotriazole // Catalysts 10, 1371 (2020).

T. Čižmar, I. Panžić, K. Salamon, I. Grčić, L. Radetić, J. Marčec, A. Gajović, Low-cost synthesis of Cu-modified immobilized nanoporous TiO2 for photocatalytic degradation of 1H-benzotriazole // Catalysts 10, 19 (2020).

J. Macan, F. Brleković, S. Kralj, A. Supina, D. Gracin, A. Šantić, A. Gajović, Soft chemistry synthesis of CaMnO3 powders and films // Ceramics International 46, 18200–18207 (2020).

I. Erceg, A. Selmani, A. Gajović, I. Panžić, D. Iveković, F. Faraguna, S. Šegota, M. Ćurlin, V. Strasser, J. Kontrec, D. Kralj, N. Maltar Strmečki, M. Dutor Sikirić, Calcium phosphate formation on TiO2 nanomaterials of different dimensionality // Colloids and Surfaces A: Physicochemical and Engineering Aspects 593, 124615 (2020).

L. Basioli, M. Tkalčević, I. Bogdanović-Radović, G. Dražić, P. Nadazdy, P. Siffalovic, K. Salamon, M. Mičetić, 3D Networks of Ge Quantum Wires in Amorphous Alumina Matrix // Nanomaterials 10, 1363 (2020).

J. Macan, M. Dutour Sikirić, M. Deluca, R. Bermejo, C. Baudin, M. Plodinec, K. Salamon, M. Čeh, A. Gajović, Mechanical properties of zirconia ceramics biomimetically coated with calcium deficient hydroxyapatite // Journal of the Mechanical Behavior of Biomedical Materials 111, 104006 (2020).

M. Tkalčević, L. Basioli, K. Salamon, I. Šarić, J. Sancho-Parramon, M. Bubaš, I. Bogdanović-Radović, S. Bernstorff, Z. Fogarassy, K. Balázsi, M. Petravić, M. Mičetić, Ge quantum dot lattices in alumina prepared by nitrogen assisted deposition: Structure and photoelectric conversion efficiency // Solar Energy Materials and Solar Cells 218, 110722 (2020).

L. Basioli, J. Sancho-Parramon, V. Despoja, S. Fazinić, I. Bogdanović Radović, I. Božićević Mihalić, K. Salamon, N. Nekić, M. Ivanda, G. Dražić, S. Bernstorff, G. Aquilanti, M. Mičetić, Ge Quantum Dots Coated with Metal Shells (Al, Ta, and Ti) Embedded in Alumina Thin Films for Solar Energy Conversion // ACS Applied Nano Materials 3, 8640–8650 (2020).

M. Jakovac, T. Klaser, B. Radatović, Ž. Skoko, L. Pavić, M. Žic, Surface Characterization and Conductivity of Two Types of Lithium-Based Glass Ceramics after Accelerating Ageing // Materials 13, 5632 (2020).

T. Mihelj Josipović, M. Kovačević, S. Mateša, M. Kostešić, N. Matijaković, B. Radatović, D.M. Lyons, D. Kralj, M. Dutour Sikirić, The Influence of Different Classes of Amino Acids on Calcium Phosphates Seeded Growth // Materials 13, 4798 (2020).

M. Kralj, A. Supina, D. Čapeta, I. Sović, I. Halasz, Mechanochemical oxidation of graphite for graphene-hydrogel applications: Pitfalls and benefits // Materialia 14, 100908 (2020).

A. Božič and A. Šiber, Mechanical design of apertures and the infolding of pollen grain // Proc Natl Acad Sci USA 117, 26600 (2020).

A. Šiber, “Icosadeltahedral Geometry of Geodesic Domes, Fullerenes and Viruses: A Tutorial on the T-Number” // Symmetry 12, 556 (2020).

M. Tkalčević, M. Gotić, L. Basioli, M. Lihter, G. Dražić, S. Bernstorff, T. Vuletić, M. Mičetić, Deposition of Thin Alumina Films Containing 3D Ordered Network of Nanopores on Porous Substrates // Materials 13, 2883 (2020).

A. Selmani, L. Ulm, K. Kasemets, I. Kurvet, I. Erceg, R. Barbir, B. Pem, P. Santini, I. Delač Marion, T. Vinković, A. Krivohlavek, M. Dutour Sikirić, A. Kahru, I. Vinković Vrček, Stability and toxicity of differently coated selenium nanoparticles under model environmental exposure settings // Chemosphere 250, 126265 (2020).

Pozvana konferencijska predavanja

Chemical and mechanical nanoengineering of (epitaxial) graphene, M. Kralj @ Energy Materials and Nanotechnology Qingdao Meeting, Qingdao, China (14.-17.6.2015.)

Epitaksijalni grafen i srodni 2D materijali, M. Kralj @ 9. znanstveni sastanak Hrvatskog fiziklanog društva, Umag, Croatia (5.-7.10.2015.)

Graphene Applications, M. Kralj @ Inovation – Driven Defence Enterprising, Zagreb, Croatia (19.-20.10.2015.)

Odabrani seminari i kolokviji

Chemical and mechanical engineering of epitaxial graphene, 25.3.2015, talk by M. Kralj at Physik-Institut, University of Zurich, Zurich, Switzerland (invited by Thomas Greber)

Engineering epitaxial graphene by adsorption, intercalation and strain, 3.6.2015, talk by M. Kralj at NUS Centre for Advanced 2D Materials, National University of Singapore, Singapore (invited by Slaven Garaj)

Aspects of epitaxial graphene engineering: adsorption, intercalation, strain, and transfer, 10.6.2015, talk by M. Kralj at Institute of Physics, Chinese Academy of Sciences, Beijing, China (invited by Hongjun Gao / Ye-Liang Wang)

Primjene epitaksijalnog grafena: adsorpcija, interkalacija, elastičnost, 13.07.2015., talk by M. Kralj at Mediterranean Institute for Life Sciences, Split, Croatia (invited by Vlasta Bonačić-Koutecky)

Teme istraživanja

G2D mosaic green_LRThe G2D draws its strength upon synergy of researchers with versatile expertise in condensed matter physics, optics and photonics, soft-matter physics, solid state chemistry, ion-beam physics, and material science. This expertise and synergy provides a promise for discoveries of new phenomena in 2D materials, and potentially their applications. Particular topics to be investigated aim at (opto)mechanical, optoelectronic, spintronic, bioelectronic, capacitor, and photovoltaic applications.

Synthesis. All large scale applications require synthesis (in large amounts) of large area 2D materials. We will explore and improve different methods of synthesis. The CVD method will be exploited under various conditions (vacuum, low pressure, atmospheric pressure) and optimised for the growth of large area (~few cm2) graphene, TMD, and h-BN single-crystal layers on metallic and other types of substrates; we will develop methods of functionalization (modify shapes, electronic properties, etc…) in electronic, optoelectronic and bioelectronic devices. We will develop transfer procedures based on novel carrier polymers and solvents which were not yet exploited, in order to obtain high-quality devices for characterization of optical and (opto)mechanical properties or to obtain high-quality electrode for solar cells. We will also develop mechanochemical methods to synthesize large amounts of 2D material, which offers greater control of the reaction course over traditional methods by establishing novel methods of high-throughput synthesis e.g. for the optimization of graphene anode in supercapacitors. Finally, we plan to produce more complex samples and by this we aim at specific properties and functionality of these complex structures. This will involve production of hybrid structures like DNA arrays on template graphene; samples and devices intercalated by magnetic or other desired proximity property materials; heterostructures obtained by combination of graphene and/or TMD and/or h-BN layers; transparent electrodes for quantum-dots based novel photovoltaic applications; defect engineered graphene and 2D materials.

Characterization. We apply a broad chain of characterization methods aiming at different physical properties. Basic sample characterization is provided through the application of Raman micro spectroscopy (Raman), scanning- and transmission-electron microscopy (SEM, TEM), scanning tunneling and atomic force microscopy (STM, AFM) characterization, and additional techniques, such as x-ray diffraction, or grazing incidence small angle x-ray scattering. In addition, more specialized experiments are envisioned to explore: optical properties of 2D materials (photodetection, photoluminescence, photoexcited carriers); macroscopic elastic properties, e.g. wrinkles and more complicated forms in porous graphite with an experimental insight obtained in newly established Laboratory for extreme mechanics; electronic transport and electronic band structure of different samples by transport methods and photoelectron spectroscopies; efficiency of 2D materials as electrodes in the photovoltaic elements; performance of graphene anode obtained from high-throughput synthesis; porosimetry for samples relevant for gas storing.

Modelling. Theoretical calculations are performed to study various electric, optical and mechanical properties of graphene and 2D materials by using the most up-to-date methods and techniques including DFT calculations (numerical), density-matrix theory calculation of the AC conductivity (perturbation theory), finite-difference time-domain Maxwell equations (numerical calculation of the optical properties of graphene based devices), and theory of elasticity (mechanical properties). In addition, for more complex structures e.g. transistors, electrodes such as gates will be implemented in vdW-DF methodology to model or predict properties of rechargeable batteries, solar cell materials, thermoelectrics and so on.

Članovi

Sadržaj nije dostupan na hrvatskom For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

G2D core team members in alphabetical order

aumiler Damir Aumiler, Institute of Physics, investigates experimentally and theoretically the interaction of atoms with ultrashort laser pulses, starting with the ‘05 PRL paper that enabled the first frequency-domain visualization of the fs-frequency-comb and initiated the work in the field of frequency comb spectroscopy in Zagreb. Leader of the CALT structural project closely related to CEMS topics.
ban Ticijana Ban, Institute of Physics, with more than 15 years of experience in the field of experimental atomic and molecular physics works with different types of laser system from low-power cw diode laser to high power fs-laser systems. Presently, she runs the cold Rb-atoms experiment, the first ultracold experiment in Croatia and the region.
 bogdanovicradovic Iva Bogdanović Radović, Ruđer Bošković Institute, works on a development and application of different ion beam methods: Rutherford backscattering, Nuclear Reaction Analysis, Time-of-ight Elastic Recoil Detection Analysis, coincident elastic scattering and MeV Secondary Ion Mass Spectroscopy, which are relevant for materials analysis. Last couple of years she also works in a eld of materials modication by MeV ions.
 buljanH Hrvoje Buljan, Department of Physics, Faculty of Science at University of Zagreb, leader of the Modelling package, a theoretical physicist, in the past 5 years worked on plasmons in gr with a focus on plasmonic losses in these structures. The ‘09 PRB paper on this topic is by mid ’15 cited more than 450 times. Expert in the fields of optics and photonics, and ultracold atomic gases.
buljanM Maja Buljan, Ruđer Bošković Institute, works on synthesis, characterization and applications of thin films based on self-assembled nano-particles produced by magnetron sputtering. Starting with the results in PRB ‘09, which present new type of nanoparticle self-assembly process in solid amorphous systems, she works on development and application of these materials in solar cells, their characterization by X-rays and description of their growth by Monte Carlo simulations.
 gajovic Andreja Gajović, Ruđer Bošković Institute, works in the field of nanostructured functional metal oxides including syntheses and characterization of nanostructures for photo-catalysts, oxide ceramics for sensors, ferroelectrics and multiferroic. She also works on Raman spectroscopy and electron microscopy of carbon nanostructures for catalysts.
 halasz Ivan Halasz, Ruđer Bošković Institute, chemist working on mechanochemical synthesis and characterization of solid state crystalline materials. Published in prestigeous top journals such as Nature Chemistry, Angew Chem Int Ed,…
 kralj Marko Kralj, Institute of Physics, G2D research unit leader, responsible for Management & Dissemination, and Synthesis packages. He has expertise in surface physics and works on epitaxial graphene since ‘09, starting with the PRL paper and groundbreaking ARPES experiments on superlattice effects in gr which brought graphene research in Croatia to top internationally competitive level.
 lazic Predrag Lazić, Ruđer Bošković Institute, investigates novel material properties by means of density functional theory and develops new methods to describe experimental findings. The main aim is to develop improved functionals, e.g. vdW-DF in order to include nonlocal correlation crucial for the van der Waals forces playing a key role in graphene and layered 2D materials.
 siber Antonio Šiber, Institute of Physics, working on a broad range of problems in biophysics, phyical virology, soft matter physics and surface science.
 vujicic Nataša Vujičić, Institute of Physics, works in the field of experimental atomic physics and optics with more than 10 years of experience in femtosecond (fs) laser spectroscopy. Recently, she started with investigations of optical properties of 2D materials with fs lasers. Such measurements yield insights into the interactions of photoexcited carriers with other degrees of freedom, such as other carriers and phonons and  allow us to exploit the nonlinear optical response of 2D materials due to fs laser high optical intensities.
 vuletic Tomislav Vuletić, Institute of Physics, leader of the Characterization package, is continually introducing new experimental methods for soft matter physics/nanobiophysics research, consequently enabling this research eld in Croatia: development of impedance spectroscopy, fluorescence correlation spectroscopy, quartz crystal microbalance with dissipation monitoring, small angle X-ray scattering and also involvement in procurement and set-up of the AFM.

Associated members

In conjunction with the core team members, G2D research unit of CEMS has a broad network of associated members, starting from the accompanying postdocs, PhD and Masters students and researchers from around who are interested and/or are involved in 2D materials-driven topics. In the G2D unit we plan to employ additional PhD students with well-defined topics which will be aimed to make interdisciplinary connections between different topics embedded in the G2D research.

One of the most important expected impacts of the G2D unit is on young researchers. G2D will form a highly competitive school for training of young researchers with versatile skills, on timely topics, and in stimulating environment nourishing excellence. We are convinced that the students gaining PhD within G2D will be highly attractive as postdocs in top-notch world scientific institutions (for those seeking academic career this is an inevitable step), but also in Croatian SME/industry connected to the G2D and CEMS.

Znanost o grafenu i srodnim 2D strukturama

G2D_scheme_LRThe mission of the CEMS research unit Science of Graphene and Related 2D Structures (G2D) is to provide a framework for highly competitive level of research on the international level, which is focused on graphene and related 2D materials, to gather a team of scientists
capable of acquiring funding from most competitive EU and other international funding sources, and to promote research motivated by applications of direct interest for the Croatian hi-tech, SME, and industrial sectors. The synergy of the G2D and CEMS as a whole is ubiquitous for achieving those objectives.

The scientific focus of the G2D is on graphene, a 2D crystal of carbon atoms arranged in a honeycomb lattice, and follow-up 2D materials which complement graphene and extend versatility regarding physical and chemical properties and related applications. The research on graphene runs at an intensive pace for almost a decade now, being one of the most active fields in today’s scientific research in general. The potential of 2D materials to revolutionize technologies was recognized globally, which poured considerable research funding around this topic. For example, the Graphene flagship programme by the EU invests one billion Euro in the period 2013-2023 specifically in a direction of future emerging technologies (FET) based on graphene and follow-up 2D materials.

The capacities of the team are based on our own research results on graphene, which stands on equal footing with respect to industrially far more developed countries, as well as on a broad expertise concentrated in the team in versatile topics that can be streamed towards 2D materials-related topics. This enabled us to develop a concept based on a closed cycle of research involving different types of innovative synthesis, a broad range of characterization methods and a strong support in theoretical modelling, thus granting for G2D’s independence and open innovativeness. The strength of the team should be emphasized. All team members are in the middle or early stage of their career, highly productive, with the track records ranking them among top scientists in Croatia.