Ostvareno generiranje parova polarizacijski spregnutih fotona

Sa zadovoljstvom objavljujemo da je 9. travnja 2018. istraživači Istraživačke jedinice Fotonika i kvantna optika Znanstvenog centra izvrsnosti za napredne materijale i senzore, na Institutu Ruđer Bošković, dovršili su gradnju eksperimentalnog postava izvora parova spregnutih fotona zasnovanog na procesu spontane parametarske pretvorbe (Engl. spontaneous parametric downconversion (SPDC), kolinearni proces tipa II) fotona valne duljine 405 nm u parove infracrvenih fotona u PPKTP kristalu te optičkom postavu u Sagnac-ovoj konfiguraciji. Izvor stabilno generira koincidentne parove polarizacijski spregnutih fotona.

Iako je kvantno sprezanje fotona poznato, ovaj kontraintuitivni efekt i dalje je predmet intenzivnog istraživanja kako na fundamentalnoj tako i na razini mogućih primjena u kvantnoj komunikaciji, kvantnom računanju i kvantnoj metrologiji. Ostvareni rezultat je ključan za buduća istraživanja ove grupe.

Arbitrarily exhaustive generation of contextual sets

Recently obtained results published in Pavičić, M., Arbitrarily exhaustive hypergraph generation of 4-, 6-, 8-, 16-, and 32-dimensional quantum contextual sets, Physical Review A, 95, 06212–1-25 (2017) will be implemented in a series of experiments in the CEMS Research Unit Photonics and Quantum Optics.

Quantum contextuality is a property of quantum systems not to have predetermined values of their observables, in contrast to classical systems. Take an entangled photon pair. Each of the photons is genuinely unpolarized before we let them through polarizers.  After polarizers, measurements find the photons in definite polarization states. Can we assume that these polarizations were somehow predetermined when the pair was created? The so-called contextual sets of states of photons prove that we cannot. Such sets are not of just of a foundational theoretical interest. Recently it turned out that the “contextuality is the source of a quantum computer’s power” (Nature; cited in the paper). Therefore, it is important for future applications and implementations to find new classes, instances, and structure of contextual sets as well as to design algorithms and programs for obtaining them. In this paper, arbitrary exhaustive hypergraph-based generation of the most explored contextual sets, Kochen-Specker (KS) ones, is carried out in up to 32 dimensions.

Twelve classes of critical KS sets (the ones that cannot be simplified further) are generated and analyzed, huge number of novel types and instances of them obtained and numerous properties of theirs found. Several thousand times more types and instances of KS sets than previously known are generated. All KS sets in three of the classes and in the upper part of a fourth are novel. The generation was carried out with the help of McKay-Megill-Pavičić (MMP) hypergraph language, algorithms, and programs which generate KS sets (see the feature image for two hypergraphs of 8-dim KS sets; also the figure below) strictly following their definition from the Kochen-Specker theorem, which itself celebrates semicentennial this year. This is in contrast to parity proof based algorithms which prevail in the literature and for which the majority of KS sets and even a whole KS class (as the one shown in the Figure below) are simply invisible.

Priopcenje za javnost povodom opstruiranja financiranja iz EU fondova od strane MZOS-a

PRIOPĆENJE ZA JAVNOST Zagreb, 7. lipnja 2016.

Otvoreno pismo ministru znanosti, obrazovanja i sporta Predragu Šustaru:

Opstruiranjem financiranja iz EU fondova hrvatskih znanstvenih centara izvrsnosti ugrožava se 50 milijuna eura iz strukturnih fondova i radna mjesta za hrvatske znanstvenike – traži se hitna reakcija ministra Šustara!

Pedeset milijuna eura, upitna radna mjesta za čak tri stotine doktoranada i postdoktoranada, te riskiranje penala od Europske komisije, samo su dio crne statistike koja ozbiljno prijeti Republici Hrvatskoj (RH), a odvija se u sjeni problema s kurikularnom reformom.

Deset znanstvenih centara izvrsnosti proglašenih od strane Ministarstva znanosti obrazovanje i sporta (MZOS) tijekom 2014. i 2015. godine na prijedlog Nacionalnog vijeća za znanost, visoko obrazovanje i tehnološki razvoj, posljednjih su nekoliko mjeseci postalo taocem MZOS-a.

Naime, RH se strateški odredila kroz Operativni program (OP) za financiranje Znanstvenih centara izvrsnosti (2014 – 2020), te se prema Operativnom programu očekuje 50 milijuna eura iz Europskog fonda za regionalni razvoj (ERDF) koji bi bili na raspolaganju proglašenim centrima.

Kako bi centri mogli iskoristiti europska sredstva, MZOS je obvezan raspisati natječaj. Prvi indikativni rok za raspisivanje natječaja bio je 31. ožujka, te je pomaknut na 1. lipnja 2016., a natječaj još nije raspisan.

Unatoč brojnim službenim molbama za poštivanjem obveza koje su voditelji Znanstvenih centara izvrsnosti posljednjih mjeseci dostavili ministru Šustaru i premijeru Oreškoviću s upozorenjem da je RH preuzela obvezu te je dužna raspisati planirani natječaj iz strukturnih fondova u sklopu kojih bi se izvršila evaluacija planiranih troškova u okviru pojedinih centara, s današnjim datumom MZOS još uvijek nije aktivirao natječaj Europskog fonda za regionalni razvoj (ERDF) koji bi omogućio povlačenje čak 50 milijuna eura za Znanstvene centre izvrsnosti. Time se ozbiljno ugrožava realizacija znanstvenih aktivnosti proglašenih ZCI-a i gubitak 50 milijuna eura iz EU te zapošljavanje 300 mladih stručnjaka.

Podsjetimo, MZOS je proglasio Znanstvene centre izvrsnosti iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti nakon zahtjevnih kriterija javnog natječaja, uključujući opsežne domaće i međunarodne recenzije i intervjue s voditeljima predloženih centara koji su proveli Agencija za znanost i visoko obrazovanje (AZVO) i Nacionalno vijeće za znanost, visoko obrazovanje i tehnološki razvoj. MZOS je potom temeljem članka 29. stavka 2. Zakona o znanstvenoj djelatnosti i visokom obrazovanju (Narodne novine, broj: 123/2003, 105/2004, 174/2004, 2/2007 – Odluka Ustavnog suda Republike Hrvatske, 46/2007, 45/2009,63/2011,94/2013, 139/13 i 101/2014 – Odluka i Rješenje Ustavnog suda Republike Hrvatske) proglasilo znanstvene centre izvrsnosti RH, čiji su članovi izvrsni hrvatski znanstvenici, među nositeljima međunarodne prepoznatljivosti hrvatske znanosti.

Proces prijave, vrednovanja i odabira centara trajao je tri godine, a Vlada RH je nakon provedenog postupka recenzija uskladila program centara s nacionalnim prioritetima i oni su u skladu sa Strategijom pametne specijalizacije (S3). Ovu Strategiju su više od dvije godine izrađivali brojni eksperti iz javnog i privatnog sektora koji se bave istraživanjem i razvojem, te ju je usvojio Hrvatski sabor i Europska komisija za znanost.

Cilj proglašenja centara je bio omogućiti izvrsnim hrvatskim znanstvenicima i institucijama uvjete za vrhunski istraživački rad kroz stabilno i pojačano financiranje te edukaciju mladih znanstvenika i značajan doprinos gospodarstvu RH.

Slijedom navedenog, proizlazi da se nepoštivanjem zadanih obveza od strane MZOS-a te neprovođenjem preuzetih obveza direktno ugrožavaju nacionalni interesi.

Nažalost, jedan od glavnih protivnika ustroja hrvatskih centara izvrsnosti, kao i od strane Europske komisije usvojene pametne specijalizacije (S3) RH, a koja je jedan od glavnih preduvjeta za povlačenje sredstava iz strukturnih fondova, je pomoćnik ministra za znanost dr. sc. Krešimir Zadro.

Poštovani ministre Šustar, otvorenim pismom javnosti obraćamo Vam se ispred svih Znanstvenih centara izvrsnosti (ZCI) iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti sa zahtjevom da se javno očitujete o razlozima nepoštivanja odluka Vlade RH i neprovođenju usvojenih programa financiranja hrvatskih centara izvrsnosti iz EU fondova te datumu raspisivanja natječaja kako bi se izbjegao crni scenarij.

Vjerujemo da niste spremni potpuno ignorirati izvrsne hrvatske znanstvene skupine i propustiti priliku da se kroz usvojeni program pametne specijalizacije povuku sredstva u iznosu od 50 milijuna eura iz strukturnih fondova.

U situaciji kad se domaća sredstva za znanost i istraživanje sustavno režu, kad se događa egzodus najboljih mladih obrazovanih stručnjaka, znanstvena istraživanja i inovacije preživljavaju velikim dijelom zbog izvrsnosti istraživačkih skupina i velikih napora znanstvenika u povlačenju sredstva iz programa Europske unije, ovakvo opstruiranje rada Znanstvenih centara izvrsnosti da osiguraju europska sredstva za rad i zapošljavanje stručnog kadra je nedopustivo!

S poštovanjem,
voditelji proglašenih Znanstvenih centara izvrsnosti (STEM područja):

Znanstveni centar izvrsnosti za napredne materijale i senzore,
Institut Ruđer Bošković i Institut za fiziku, Zagreb

Dr. sc. Milko Jakšić – Milko.Jaksic@irb.hr
Dr. sc. Mile Ivanda – Mile.Ivanda@irb.hr
Dr. sc. Mario Stipčević – Mario.Stipcevic@irb.hr
Dr. sc. Marko Kralj – mkralj@ifs.hr

Znanstveni centar izvrsnosti za reproduktivnu i regenerativnu medicinu,

Medicinski fakultet, Sveučilište u Zagrebu,
Akademik prof. dr.sc. Slobodan Vukičević – slobodan.vukicevic@mef.hr
Prof. dr. sc. Davor Ježek – davor.jezek@mef.hr

Znanstveni centar izvrsnosti za virusnu imunologiju i cjepiva,
Medicinski fakultet, Sveučilište u Rijeci
Prof. dr. sc. Stipan Jonjić – stipan.jonjic@medri.uniri.hr

Znanstveni centar izvrsnosti za znanost i tehnologiju – STIM, Sveučilište u Splitu
Prof. dr. dr. h.c. Vlasta Bonačić-Koutecky – vbk@cms.hu-berlin.de

Znanstveni centar izvrsnosti za bioraznolikost i molekularno oplemenjivanje bilja, Agronomski fakultet , Sveučilište u Zagrebu
Prof. dr. sc. Zlatko Šatović – zsatovic@agr.hr

Znanstveni centar izvrsnosti za bioprospecting mora
Institut Ruđer Bošković, Zagreb
Dr.sc. Rozelindra Čož-Rakovac – Rozelindra.Coz-Rakovac@irb.hr

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu

Prof.dr.sc Hrvoje Buljan – hbuljan@phy.hr
Prof. dr. sc. Pavle Pandžić – pandzic@math.hr

Znanstveni centar izvrsnosti za personaliziranu brigu o zdravlju,

Sveučilište Josip Juraj Strossmayer u Osijeku
Prof. dr. sc. Gordan Lauc – glauc@pharma.hr
Prof. dr. sc. Ines Drenjančević – ines.drenjancevic.peric@mefos.hr

Znanstveni centar izvrsnosti za temeljnu, kliničku i translacijsku neuroznanost, Medicinski fakultet, Sveučilište u Zagrebu
Prof. dr. sc. Miloš Judaš – mjudas@hiim.hr

Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu

Prof.dr.sc. Sven Lončarić – sven.loncaric@fer.hr
Prof. dr. sc. Ivan Petrović – ivan.petrovic@fer.hr

Priopćenje voditelja proglašenih
            Znanstvenih centara izvrsnosti (STEM područja)             ___________________________________________________________________________________________________

Testiran inovativni senzor tamne energije – KWISP

Jedna od još neriješenih zagonetki moderne fizike je svakako ono a sastavu Svemira. Danas smatramo da je oko 5% Svemira sačinjeno od uobičajne tvari kakvu nalazimo svuda naZemlji, dok je ostatak, 95% sačinjeno od tamne tvari i energije. Tamna tvar čini 25% Svemira, dok tamna energija čini ostatak od oko 70%. Naše poznavanje tamnih dijelova Svemira je vrlo slabo. One su prvenstveno uvedene sa ciljem usklađivanja opažanja sa teoretskim modelima. Tako je tamna energija uvedena da bi se objasnilo opaženo povećavanje brzine širenja Svemira. Jedan od predloženih mehanizama je postojanje skalarnog polja koje bi trebalo biti na neki način zasjenjeno da bi njegovo postojanje bilo u skladu sa Općom teorijom relativnosti i rezultatima potraga za “petom silom” na Zemlji. Jedna od mogućnosti je mehanizam u kojem je efektivna masa ovisna o gustoći tvari koja ih okružuje. U slučaju da postoji čestice “kameleoni” mogu biti proizvedene i na Suncu te opažene na Zemlji sa odgovarajućim senzorom. Opažanje počiva na činjenici da čestice koje udaraju u odgovarajuću površinu prenose linearnu količinu gibanja na istu te stvaraju pritisak zračenja odnosno silu koja pomiče površinu iz ravnotežnog položaja.

CERN_Courier

Takav senzor je izgrađen i testiran u suranju sa laboratorijem za optiku talijanskog nacionalnog instituta za nuklearnu fiziku (INFN), gdje je bio i smješten prije nego je prenesen u konačni postav u CERNu što je i zabilježeno u CERN Courieru (vidi sliku). Osjetni element je tanka membrana od silicijevog nitrida koja se nalazi u središtu Fabry – Perotove optičke šupljine. Opažajuči promjene u rezonantnoj frekvenciji šupljine moguće je opaziti male pomake membrane uzrokovane pritiskom zračenja. Uporaba takvog senzora u eksperimentima gdje se želi opaziti tamna energije je vrlo zanimljiva iz razloga što omogućava direktno opažanje sprege čestica “kameleona” sa materijom. Osjetljivost i metoda kalibracije se dani u članku objavljenom u časopisu Physics of the Dark Universe (faktor odjeka 8.57).

Projekti

Projekti

13. “Study of the use of the ESS facility to accurately measure the neutrino cross-sections for ESSnuSB leptonic CP violation measurements and to perform sterile neutrino searches and astroparticle physics (ESSnuSBplus)”, voditelj za Hrvatsku B. Kliček, Ug. br. 101094628, početak projekta 01.01.2023. Financiran kroz HORIZON-INFRA-2022-DEV-01. Ukupna vrijednost projekta: 3 000 000 EUR, udio za IRB: 159 416 EUR.

12. “Croatian Quantum Communication Infrastructure – CroQCI“, prijavitelj CARNET, znanstveni voditelj IRB, voditelj projekta Martin Lončarić ((IRB). Financirano kroz Obzor Europa uz 59% učešća iz Hrvatskog Nacionalnog programa oporavka i otpornosti (NPOO). Šifra ugovora: MZO 101091513. Ukupna vrijednost projekta: 9.999.334,04 eur, udio za IRB cca. 3.600.000,00 eur. Projekt počeo 1.1.2023.

11. “Development of building blocks for new European quantum communication network”, Croatian leader: M. Stipčević, Research project Croatia-Slovenia, HRZZ grant No. IPS-2020-1-2616 started 15.10.2019. Financed by HRZZ (200 kEUR) and ARRS (300 kEUR). Web stranica projekta: http://cold.ifs.hr/rubidium-vapor-eit-quantum-memories/

10. “Biological and bioinspired structures for multispectral surveillance”, Hrvatski voditelj: H. Skenderović, Multi-year Science for Peace NATO Project No. G5618, početak 15.10.2019. Financiran od NATO-a.

9. Feasibility Study for employing the uniquely powerful ESS linear accelerator to generate an intense neutrino beam for leptonic CP violation discovery and measurement (ESSnuSB), voditelj za Hrvatsku B. Kliček, Ug. br.  777419 (H2020), potpisan 22.11.2017., početak projekta 01.01.2018. Financiran kroz Horizon 2020.

8. “Potpora vrhunskim istraživanjima Centra izvrsnosti za napredne materijale i senzore“, voditelji M. Jakšić, M. Ivanda, M. Kralj i M. Stipčević. Financiran kroz European structural and investment funds (ESIF), MSE ugovor Br. KK.01.1.1.01.0001.

7. COST action CA15139 – Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery (EuroNuNet), Action chair: Dr Marcos Dracos (IN2P3 Strasbourg, France), Management Committee Member: Dr Budimir Kliček (Ruđer Bošković Institute, Zagreb, Croatia)

6. “Quantum entanglement for ultra-secure communications (Kvantno sprezanje za ultra-sigurne komunikacije)“, Voditelji: Dr. Mario Stipčević, (CEMS-IRB, Zagreb, Croatia) and Prof. dr. Rupert Ursin (IQOQI, Vienna, Austria). Trajanje: 2016-2017 (2 godine).

5. “Holography and interferometry under weak illumination (Holografija i interferometrija u uvjetima niske razine svjetla)” HrZZ – IP-2014-09-7515, 01.05.2015. – 30.04.2019. Leader: Nazif Demoli, Institute of Physics (IFS). Associates: Hrvoje Skenderović (IF), Davorin Lovrić (IF), Jadranko Gladić (IF), Mario Rakić (IF), Mario Stipčević (RBI), Ognjen Milat (IF), Mladen Pavičić, Denis Abramović (IF), Marin Karuza (University of Rijeka).  Područje istraživanja: Optička fizika.

4. “TRANSHOW1 Prijenos znanja“, voditelj M. Lončarić

3. COST Action MP1406 – Multiscale in modelling and validation for solar photovoltaics (MultiscaleSolar), Action Chair: Dr James Connolly (Génie électrique et électronique de Paris), Management Committee Member: Dr Martin Lončarić, (Ruđer Bošković Institute, Zagreb, Croatia)

2. “ICT COST Action IC1306 Cryptography for Secure Digital Interaction“, Voditelj: Prof. Claudio Orlandi (Aarhus University, Denmark), Coordinator for Croatia: Dr. Mario Stipčević, Ruđer Bošković Institute.

1. “ICT COST Action CA15220 Quantum Technologies in Space“, Leader: Prof. Angelo Bassi (University of trieste, Italy), Coordinator for Croatia: Dr. Mario Stipčević, Ruđer Bošković Institute.

Rad o optičkom kvantnom generatoru slučajnih brojeva objavljen u Scientific Reports

Fizički generator slučajnih brojeva s najbržim ‘refleksima’

Rezultate istraživanja objavio je ugledni multidisciplinarni znanstveni časopis Scientific Reports (IF 5.58) kojeg objavljuje Nature Publishing Group.

Ruđerovac dr. sc. Mario Stipčević u suradnji s kolegom dr. sc. Rupertom Ursinom s Instituta za kvantnu optiku i kvantnu informatiku pri Austrijskoj akademiji znanosti, razvio je novi model kvantnog generatora slučajnih brojeva. Riječ je o uređaju koji na zahtjev, odnosno putem električnog impulsa, daje jedan slučajni bit u izuzetno kratkom vremenu i to uz 100 postotnu učinkovitost.

Fizički generator slučajnih brojeva s najbržim 'refleksima'

Uređaj funkcionira slično principu bacanja novčića s tim da bacanje i očitanje ‘novčića’ traje vrlo kratko i da novčić nikada ne ispadne iz ruke.Ovaj bi se sklop, u principu, mogao postojećom tehnologijom svesti na veličinu čipa, čime bi se otvorile mogućnosti za vrlo širok spektar primjena.

Slučajni brojevi igraju izuzetno važnu ulogu u kontekstu suvremenog društva koje se temelji na razmjeni informacija i digitalnoj obradi podataka u računalima, mobilnim uređajima, bankomatima i sl. Slučajni brojevi neizostavni su dio kriptografskih protokola koji su neophodni kako bi se osigurali sigurnost, privatnost i integritet podataka.

“Nizovi slučajnih brojeva potrebni su za cijeli niz primjena: kriptografsku zaštitu podataka, znanstvena istraživanja, simulacije, a koriste se i u stvarnim i virtualnim kockarnicama i on-line igrama, no je naša primarna motivacija bilo rješavanje fundamentalnog problema kvantnog sprezanja.” – objašnjava dr. Stipčević, viši znanstveni suradnik u ‘Ruđerovom’ Laboratoriju za elektromagnetske i slabe interakcije te voditelj Istraživačke jedinice za fotoniku i kvantnu optiku Centra izvrsnosti za napredne materijale i senzore – CEMS.

Svatko tko se bavi programiranjem zna da su softverski generirani slučajni brojevi zapravo pseudo-slučajni, međusobno povezani matematičkom formulom i stoga predvidljivi i nesigurni za primjenu u kriptografiji te mogu dati pogrešne rezultate u znanstvenim simulacijama. Za razliku od pseudo-slučajnih softverskih generatora koji se često koriste u računalnim metodama, fizički generatori slučajnih nizova brojeva, poput ovog, ne ovise o složenim algoritmima, već o fundamentalnoj slučajnosti odabranog fizičkog procesa.

MStipcevic - RUrsin

U ovom radu pod naslovom: “An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response” znanstvenicima je pošlo za rukom razviti generator koji je jednostavan za primjenu, koji nudi 100 postotnu učinkovitost u proizvodnji slučajnog bita svaki puta kad ga se to traži i to u vrlo kratkom vremenu (ispod 10 nanosekundi), a da pri tome ništa u prošlosti (tj. prije ‘bacanja novčića’) ne utječe na rezultat.

“Kašnjenje između zahtjeva i dostupnosti slučajnog bita kod novog kvantnog generatora slučajnih brojeva je nedvojbeno najkraće moguće s postojećom tehnologijom s obzirom da ona zahtijeva minimalni logički slijed procesa potrebnih za generiranje jednog bita, odnosno samo jedan proces emisije i jedan proces detekcije fotona – najmanje količine svjetla.” – objašnjava Stipčević.

Istraživanje je učinjeno u sklopu Istraživačke jedinice za fotoniku i kvantnu optiku Centra izvrsnosti za napredne materijale i senzore – CEMS.

Članovi

Institut Ruđer Bošković, Bijenička 54, HR-10000 Zagreb, Hrvatska (IRB):

mario.stipcevic Dr. sc. Mario Stipčević, znanstveni savjetnik na IRB-u, voditelj istraživačke jedinice CEMS-Fotonika. Ekspertiza i teme istraživanja: novih principi i uređaji za generiranje kvantno spregnutih parova fotona, kvantna kriptografija i kvantna komunikacija, biomimetičko računanje, kvantna slučajnost, holografija u uvjetima niske razine svjetla, kvantna kontekstualnost, diodni laseri i detektori fotona.
Dr. sc. Martin Lončarić, znanstveni suradnik na IRB-u. Znanstveno-istraživačke aktivnosti su mu u polju fotonike (plazmonika, optička i strukturna svojstva nanočestica plemenitih metala, metal-dielektrik kompozita i optičkih tankoslojnih sustava te primijenjena kvantna optika). Sudjelovao je u nizu projekata razvoja i proizvodnje optičkih i optoelektroničkih uređaja i instrumentacije s primjenama u znanosti, medicini te za potrebe obrane i nacionalne sigurnosti. Ima veliko iskustvo u pružanju ekspertiza, mjerenja i ispitivanja iz područja optike i fotonike subjektima iz gospodarstva.
Dr. sc. Budimir Kliček, znanstveni suradnik na IRB-u. Provodi znanstveno-istraživačke aktivnosti u polju fizike neutrina, te primjene fotonskih detektora u tome polju. Voditelj je IRB grupe Horizon 2020 projekta ESSnuSB, te predstavnik IRB-a na eksperimentima ENUBET i JUNO.
Dipl. ing. Anton Radman, stručni suradnik na Institutu Ruđer Bošković. Diplomirao je elektrotehniku na Fakultetu elektrotehnike i računarstva u Zagrebu. Na Institutu Ruđer Bošković radi od 2003. godine. Radi na projektiranju elektroničkih sklopova i tiskanih veza za optoelektroničke sustave, projektiranju sklopova na FPGA platformama, razvoju sklopova i programske podrške za povezivanje računala i mjernih uređaja. Radio je na razvoju medicinske instrumentacije za fotodinamičku terapiju i dijagnostiku (uređaji MediLED) i implementaciji automatizacije upravljanja i kontrole sustava za naparavanje optičkih tankih slojeva.
Mag. phys. Matej Peranić, asistent na IRB-u. Znanstveno-istraživačke aktivnosti iz područja primjenjene kvantne optike.
Željko Samec, tehnički suradnik na IRB-u na poslovima projektiranja i izrade optomehaničkih sustava s višegodišnjim iskustvom rada u optičkoj industriji na poslovima vođenja proizvodnje naočalnih leća i tankih filmova te u obrambenoj industriji.
Mateja Batelić, student volonter na IRB-u. Znanstveno-istraživačke aktivnosti iz područja kvantne optike.

Institut za Fiziku, Bijenička 46, HR-10000 Zagreb, Hrvatska (IF):

Dr. sc. Nazif Demoli, znanstveni savjetnik na IF-u. Voditelj Laboratorija za koherentnu optiku na IF-u i voditelj HRzz projekta “Holografija i interferometrija u uvjetima niske razine svjetla”. Njegov rani rad bio je u području optičkog prepoznavanja uzoraka s posebnim interesom za projektiranje i optimizaciju složenih korelacijskih filtara, kao i njihova izvedba pomoću prostornih modulatora svjetla. Njegovi istraživački interesi uključuju: holografiju (klasičnu, digitalnu i kvantnu) i interferometriju (lasersku i holografsku).
Dr. sc. Hrvoje Skenderović, viši znanstveni suradnik na IF-u. Njegove istraživačke aktivnosti uklučuju: femtosekundnu lasersku spektroskopiju, direktno lasersko pisanje ultrakratkim pulsevima, koherentna kontrola pomoću femtosekundnih pulseva, fotoluminescencija tankih slojeva i digitalna holografija. Posjeduje certifikat Certified Labview Associate Devoloper (CLAD).
Denis Abramović, MSc, asistent na IF-u. Njegovi istraživački interesi uključuju istraživanje fundamentalnih kvantnih pojava i njihova primjena, interferometriju i holografiju.

Sveučilište u Rijeci, Trg braće Mažuranića 10, HR-51000 Rijeka, Hrvatska

Prof. dr. sc. Marin Karuza je izvanredni profesor na Sveučilištu u Rijeci i voditelj Laboratorija za nelinearnu i kvantnu optiku. Njegovi glavni istraživački interesi su astro fizika i kvantna optika. Područja ekspertize su: optika napose Fabry-Perot optički rezonatori, interferometrija, rezonatori, kontrolne petlje i LabVIEW.

Humboldt University, Unter den Linden 6, 10099 Berlin, Njemačka:

Dr. Sc. Mladen Pavičić, Znanstveni savjetnik. Ekspertiza: kvantna informatika, kvantno računarstvo, kvantna kriptografija, kvantni kontekstualni modeli, generiranje Kochen-Specker-ovih skupova, generiranje i manipuliranje spregnutih fotona.

Radovi i prezentacije

Članci u časopisima koje indeksira Current Contents:

  1. P. Mishra, R. Majhi, S. K. Pusty, M. Ghosh and R. Mohanta, “Study of long range force in P2SO and T2HKK’’, JHEP 09 (2024), 100, DOI: 10.1007/JHEP09(2024)100
  2. J. Aguilar,….,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević,… et al. [ESSnuSB], “Search for Leptonic CP Violation with the ESSnuSBplus Project,” LHEP 2024 (2024), 517, DOI: 10.31526/lhep.2024.517
  3. J. Aguilar, ….,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević,… et al. [ESSnuSB], “Decoherence in neutrino oscillation at the ESSnuSB experiment’’, JHEP 08 (2024), 063, DOI: 10.1007/JHEP08(2024)063
  4. J. Aguilar, …., M. Ghosh, …, L.Halić, …,et al. [ESSnuSB], “Exploring atmospheric neutrino oscillations at ESSnuSB’’, JHEP 10 (2024), 187  DOI: 10.1007/JHEP10(2024)187
  5. M. Pavičić, M. Waegell, “Generation of Kochen-Specker contextual sets in higher dimensions by dimensional upscaling whose complexity does not scale with dimension and their applications,” Phys. Rev. A, 110(1), 012205-1-16 (2024).    DOI: 10.1103/PhysRevA.110.012205
  6. J. Aguilar, …,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević, et al. [ESSnuSB], “Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment’’, Phys. Rev. D 109 (2024), 115010, DOI: 10.1103/PhysRevD.109.115010
  7. D.K. Singha, R. Majhi, L. Panda, M. Ghosh and R. Mohanta, “Study of scalar nonstandard interaction at the Protvino to super-ORCA experiment’’, Phys. Rev. D 109 (2024), 095038, DOI: 10.1103/PhysRevD.109.095038
  8. P. Mishra, M.K. Behera, P. Panda, M. Ghosh and R. Mohanta, “Exploring models with modular symmetry in neutrino oscillation experiments’’, JHEP 09 (2023), 144, DOI: 10.1007/JHEP09(2023)144
  9. P. Panda, M. Ghosh and R. Mohanta, “Determination of neutrino mass ordering from Supernova neutrinos with T2HK and DUNE”, JCAP 10 (2023), 033, DOI: 10.1088/1475-7516/2023/10/033
  10. M. Stipčević, “Biomimetic Random Pulse Computation or Why Do Humans Play Basketball Better than Robots?” Biomimetics 8 (2023) 594. DOI: 10.3390/biomimetics8080594
  11. M. Batelić, M. Stipčević, “Stochastic Adder Circuits with Improved Entropy Output.”, Entropy 25 (2023) 1592. DOI: 10.3390/e25121592
  12. M. Stipčević, “Enhancing the Security of the BB84 Quantum Key Distribution Protocol against Detector-Blinding Attacks via the Use of an Active Quantum Entropy Source in the Receiving Station”, Entropy 25 (2023) 1518. DOI: 10.3390/e25111518
  13. F. Acerbi, …, L. Halić, …, B. Kliček, …, M. Stipčević, et. al. “Design and performance of the ENUBET monitored neutrino beam”, Eur. Phys. J.C 83, 964 (2023). DOI: 10.1140/epjc/s10052-023-12116-3
  14. M. Pavičić, “Non-Kochen-Specker Contextuality,” Entropy, 25(8), 1117-1-21 (2023).    DOI: 10.3390/e25081117
  15. Peranić, M., Clark, M., Wang, R. et al. A study of polarization compensation for quantum networks. EPJ Quantum Technol. 10, 30 (2023). DOI: 10.1140/epjqt/s40507-023-00187-w
  16. H. Abele, … , M. Ghosh, … , L. Halić, … , B. Kliček, … , K. Krhač, …, M. Stipčević, et al. “Particle Physics at the European Spallation Source,” Phys. Rept. 1023 (2023), 1-84. DOI: 10.1016/j.physrep.2023.06.001
  17. M. Ghosh, S. Goswami, S. Pan, B. Pavlović, “Implications of the DLMA Solution of θ12 for IceCube Data Using Different Astrophysical Sources,” Universe 9, 380 (2023). DOI: 10.3390/universe9090380
  18. D. Abramović, N. Demoli, M. Stipčević, and H. Skenderović, “Quantum holography with single-photon states”, Phys. Rev. A 108 (2023) 013709. DOI: 10.1103/PhysRevA.108.013709
  19. Alekou, A., …, M. Ghosh, …, L.Halić, …, B. Kliček, …, K. Krhač, …, M. Stipčević, et. al. The ESSnuSB Design Study: Overview and Future Prospects. Universe 2023, 9, 347.  DOI: 10.3390/universe9080347
  20. D. Raikwal, S. Choubey and M. Ghosh, “Comprehensive study of Lorentz invariance violation in atmospheric and long-baseline experiments”, Phys. Rev. D 107, 115032 (2023). DOI: 10.1103/PhysRevD.107.115032
  21. P. Keshavarzian, …, M. Stipčević, …, “A 3.3-Gb/s SPAD-Based Quantum Random Number Generator,” in IEEE Journal of Solid-State Circuits. 58 (2023) 2632-2647. DOI: 10.1109/JSSC.2023.3274692.
  22. D.K. Singha, M. Ghosh, R. Majhi and R. Mohanta, “Study of light sterile neutrino at the long-baseline experiment options at KM3NeT”, Phys. Rev. D 107 (2023) , 075039. DOI: 10.1103/PhysRevD.107.075039
  23. R. Majhi, D.K. Singha, M. Ghosh and R. Mohanta, “Distinguishing nonstandard interaction and Lorentz invariance violation at the Protvino to super-ORCA experiment”, Phys. Rev. D 107 (2023), 075036 DOI: 10.1103/PhysRevD.107.075036
  24. M. Ghosh and O. Yasuda, “Effect of matter density in T2HK and DUNE”, Nucl. Phys. B 989 (2023), 116142.  DOI: 10.1016/j.nuclphysb.2023.116142
  25. D. Raikwal, S. Choubey and M. Ghosh, “Determining neutrino mass ordering with ICAL, JUNO and T2HK”, Eur. Phys. J. Plus 138 (2023), 110.  DOI: 10.1140/epjp/s13360-023-03697-9
  26. I. Jurak, M. Cokarić Brdovčak, L. Djaković, I. Bertović, K. Knežević, M. Lončarić, A. Jurak Begonja, N. Malatesti, “Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain”, Pharmaceutics (2023), 15, 956
    DOI: 10.3390/pharmaceutics15030956
  27. M. Pavičić (2023), “Quantum Contextuality,” Quantum, 7, 953-1-68 (2023).    DOI: 10.22331/q-2023-17-953
  28. A. Alekou, E. Baussan, A. K. Bhattacharyya, N. Blaskovic Kraljevic, M. Blennow, M. Bogomilov, B. Bolling, E. Bouquerel, O. Buchan and A. Burgman, et al. “The European Spallation Source neutrino super-beam conceptual design report”, Eur. Phys. J. ST 231 (2022)   DOI: 10.1140/epjs/s11734-022-00664-w
  29. P. Panda, M. Ghosh, P. Mishra and R. Mohanta, “Extracting the best physics sensitivity from T2HKK: A study on optimal detector volume”, Phys. Rev. D 106 (2022), 073006.   DOI: 10.1103/PhysRevD.106.073006
  30. M. Pavičić and N. Megill (2022), “Automated Generation of Arbitrarily Many Kochen-Specker and Other Contextual Sets in Odd Dimensional Hilbert Spaces,” Physical Review A106, L060203-1-5 (2022).    DOI: 10.1103/PhysRevA.106.L060203.
  31. S. Choubey, M. Ghosh and D. Raikwal, “Neutrino mass ordering: Circumventing the challenges using synergy between T2HK and JUNO”, Phys. Rev. D 106 (2022), 115013.  DOI: 10.1103/PhysRevD.106.115013
  32. D. Ribezzo, M. Zahidy, I. Vagniluca, N. Biagi, S. Francesconi, T. Occhipinti, L. K. Oxenløwe, M. Lončarić, I. Cvitić, M. Stipčević et al. “Deploying an Inter-European Quantum Network”, Advanced Quantum Technologies 6, 2200061 (2022), DOI: 10.1002/qute.202200061
  33. Y. Pelet, I.V. Puthoor, N. Venkatachalam, S. Wengerowsky, M. Lončarić, S.P. Neumann, B. Liu, Ž. Samec, M. Stipčević, R. Ursin, E. Andersson, J.G. Rarity, D. Aktas, S.K. Joshi, “Unconditionally secure digital signatures implemented in an eight-user quantum network”, New Journal of Physics, 24 (2022) 093038, DOI: 10.1088/1367-2630/ac8e25
  34. N. R. Solomons, A. I. Fletcher, D. Aktas; N. Venkatachalam, S. Wengerowsky, M. Lončarić, S. P. Neumann; B. Liu; Ž. Samec; M. Stipčević, R. Ursin, S. Pirandola, J. G. Rarity, S. K. Joshi, “Scalable Authentication and Optimal Flooding in a Quantum Network”, PRX Quantum, 3(2), 020311 (2022).  DOI: 10.1103/PRXQuantum.3.020311
  35.  A. Mardan Dezfouli, D. Abramović, M. Rakic, and H. Skenderovic, “Detection of the Orbital Angular Momentum State of Light using Sinusoidally-shaped Phase Grating”, Appl. Phys. Lett. 120(20)191106 (2022) DOI: https://doi.org/10.1063/5.0089735
  36. Z. Huang, S. K. Joshi, D. Aktas, C. Lupo, A. O. Quintavalle, N. Venkatachalam, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, Ž. Samec, L. Kling, M. Stipčević, R. Ursin , J. G. Rarity, “Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network”, npj Quantum Information, 8, 25 (2022) DOI: 10.1038/s41534-022-00535-1
  37. N. Demoli, D. Abramović, O. Milat, M. Stipčević, H. Skenderović, ” Linearity and optimum-sampling in photon-counting digital holographic microscopy”, Photonics, 9, 68 (2022) DOI:  10.3390/photonics9020068
  38. M. Stipčević, M. Batelić, “Entropy considerations in improved circuits for a biologically-inspired random pulse computer”, Scientific Reports,  12115 (2022) DOI: 10.1038/s41598-021-04177-9
  39. A. Alekou, …, M. Ghosh, …, L. Halić, …, B. Kliček, K. Krhač, …, M. Stipčević, … (ESSnuSB Collaboration), “Updated physics performance of the ESSnuSB experiment“, Eur. Phys. J. C 81, 1130 (2021). 10.1140/epjc/s10052-021-09845-8
  40. M. Mušković, I. Ćavar, A. Lesar, M. Lončarić, N. Malatesti, I. Gobin, “Photodynamic Inactivation of Legionella Pneumophila Biofilm Formation by Cationic Tetra- and Tripyridylporphyrins in Waters of Different Hardness”, International Journal of Molecular Sciences, 22 (2021), 16, 9095; DOI: 10.3390/ijms22169095
  41. M. Ghosh, S. Goswami, A. Mukherjee, “Implications of the Dark-LMA solution for neutrino mass matrices”, Nucl. Phys. B 969, 115460 (2021), DOI: 10.1016/j.nuclphysb.2021.115460
  42. S. Choubey, M. Ghosh, D. Kempe and T. Ohlsson, “Exploring invisible neutrino decay at ESSnuSB”, JHEP 05, 133 (2021), DOI: 10.1007/JHEP05(2021)133
  43. M. Pavičić, “How Secure are Two-Way Ping-Pong and LM05 QKD Protocols under a Man-in-the-Middle Attack?,” Entropy, 23(2), 163 (2021). DOI: 10.3390/e23020163
  44. Siddarth K. Joshi, Djeylan Aktas, Sören Wengerowsky, Martin Lončarić, Sebastian Philipp Neumann, Bo Liu, Thomas Scheidl, Guillermo Currás Lorenzo, Željko Samec, Laurent Kling, Alex Qiu, Mohsen Razavi, Mario Stipčević, John G. Rarity, Rupert Ursin, “A trusted node–free eight-user metropolitan quantum communication network”, Science Advances, 6 (2020), 36; eaba0959, DOI: 10.1126/sciadv.aba0959
  45. A. Lesar, M. Mušković, G. Begić, M. Lončarić, D. Tomić Linšak, N. Malatesti, I. Gobin, “Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila”, International Journal of Molecular Sciences, 21 (2020), 15; 5367, DOI: 10.3390/ijms21155367
  46. F. Acerbi et. al. (ENUBET Collaboration), “Polysiloxane-based scintillators for shashlik calorimeters”, Nucl. Instrum. Meth. A956 (2020) 163379, DOI: 10.1016/j.nima.2019.163379
  47. M. Pavičić,  “Hypergraph Contextuality,” Entropy, 21(11), 1107 (2019). DOI: 10.3390/e21111107
  48. S. Arguedas Cuendis, … M. Karuza (corresponding author), …, “First results on the search for chameleons with the KWISP detector at CAST”, Physics of the Dark Universe 26, art. No. 100367 (2019). DOI: 10.1016/j.dark.2019.100367
  49. N. Agafonova et al. (OPERA Collaboration), “Measurement of the cosmic ray muon flux seasonal variation with the OPERA detector”, Journal of cosmology and astroparticle physics, 2019 (2019), 10; 003, 12. DOI: 10.1088/1475-7516/2019/10/003
  50. N. Agafonova et al. (OPERA Collaboration), “Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam”, Phys. Rev. D 100 (2019) no.5, 051301; DOI: 10.1103/PhysRevD.100.051301
  51. N. Demoli, J. Gladić, D. Lovrić, D. Abramović, “Digital holography using LCOS microdisplay as input three-dimensional object,” Optik 194, 162877 (2019). DOI: 10.1016/j.ijleo.2019.05.083
  52. M. Pavičić, Mordecai Waegell,  Norman D. Megill and P.K. Aravind, “Automated generation of Kochen-Specker sets,” Scientific Reports,  9,  6765 (2019); DOI: 10.1038/s41598-019-43009-9
  53. Matej Par, Igor Repusic, Hrvoje Skenderovic, and Zrinka Tarle,  “Wavelength-dependent light transmittance in resin composites: practical implications for curing units with different emission spectra”, Clinical Oral Investigations, 23 (2019), 12; 4399–4409, DOI: 10.1007/s00784-019-02896-y
  54. M. Pavičić and Norman D. Megill,  “Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces”, Entropy, 20(12),928 (2018). DOI: 10.3390/e20120928
  55. T. A. Hamed, M. Lončarić et al. “Multiscale in modelling and validation for solar photovoltaics”, EPJ Photovolt. 9, 10 (2018). DOI: 10.1051/epjpv/2018008
  56. N. Agafonova et al. (OPERA Collaboration), “Final results of the search for nu(mu) -> nu(e) oscillations with the OPERA detector in the CNGS beam”, JHEP 06, 151 (2018). DOI: 10.1007/JHEP06(2018)151.
  57. N. Agafonova et al. (OPERA Collaboration), “Final Results of the OPERA Experiment on nu(tau( Appearance in the CNGS Neutrino Beam”, Phys. Rev. Lett. 120, 211801 (2018). DOI: 10.1103/PhysRevLett.120.211801
  58. S. K. Joshi, J. Pienaar, T. Ralph, L. Cacciapuoti, W. McCutcheon, J. Rarity, D. Giggenbach, J. G. Lim, V. Makarov, I. Fuentes, T. Scheidl, E. Beckert, M. Bourennane, D. E. Bruschi, A. Cabello, J. Capmany, A. Carrasco-Casado, E. Diamanti, M. Dusek, D. Elser, A. Gulinatti, R. Hadfield, T. Jennewein, R. Kaltenbaek, M. Krainak, H-K. Lo, C. Marquardt, G. Milburn, M. Peev, A. Poppe, V. Pruneri, R. Renner, C. Salomon, J. Skaar, N. Solomos, M. Stipčević, J. Torres, M. Toyoshima, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, A. Zeilinger, M. Zukowski, R. Ursin, “Space QUEST mission proposal: experimentally testing decoherence due to gravity”, New. J. Phys. 20, 108028.R1 (2018) DOI:  10.1088/1367-2630/aac58b
  59. A. W. Ziarkash, S. K. Joshi, M. Stipčević, and R. Ursin, ”Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors”, Scientific Reports 8, 5076:1-8 (2018). DOI: 10.1038/s41598-018-23398-z
  60. M. Jelovica, P. Grbčić, M. Mušković, M. Sedić, S.K. Pavelić, M. Lončarić, N. Malatesti, “In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism”, Chem. Med. Chem. 13, 360–372 (2018). DOI: 10.1002/cmdc.201700748
  61. N. Agafonova et al., OPERA Collaboration, “Study of charged hadron multiplicities in charged-current neutrino–lead interactions in the OPERA detector”, OPERA Collaboration (N. Agafonova et al.), Eur. Phys. J. C78 (2018) 62:1-8. DOI: 10.1140/epjc/s10052-017-5509-y
  62. M. Pavičić, “Can Two-Way Direct Communication Protocols Be Considered Secure?,” Nanoscale Research Letters, 12:552 (2017). DOI: 10.1186/s11671-017-2314-3
  63. M. Pavičić, O. Benson, A. W. Schell, and J. Wolters, “Mixed basis quantum key distribution with linear optics,” Opt. Express 25(20), 23545-23555 (2017). DOI: 10.1364/OE.25.023545
  64. M. Stipčević, B. G. Christensen, P. G. Kwiat, D. J. Gauthier, “Advanced active quenching circuit for ultra-fast quantum cryptography”, Opt. Express 25, 21861-21876 (2017) DOI: 10.1364/OE.25.021861
  65. M. Pavičić, “Arbitrarily exhaustive hypergraph generation of 4-, 6-, 8-, 16-, and 32-dimensional quantum contextual sets,” Phys. Rev. A 95, 062121-1-25 (2017). DOI:  10.1103/PhysRevA.95.062121
  66. V. Anastassopoulos, …, M. Karuza, … (CAST Collaboration), “New CAST limit on the axion–photon interaction”, Nature Physics 13, 584–590 (2017). DOI: 10.1038/nphys4109
  67. M. Stipčević, N. Demoli, H. Skenderović, M. Lončarić, A. Radman, J. Gladić, and D. Lovrić, “Effective procedure for determination of unknown vibration frequency and phase using time-averaged digital holography”, Opt. Express 25, 10241-10254 (2017). DOI: 10.1364/OE.25.010241
  68. N. Malatesti, A. Harej, S. K. Pavelić, M. Lončarić, H. Zorc, K. Wittine, U. Anđelković, Đ. Josić, “Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4- octadecanamidophenyl)-10, 15, 20-tris(N- methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate”, Photodiagnosis Photodyn Ther., 15, 115-126 (2016). DOI: 10.1016/j.pdpdt.2016.07.003
  69. M. Pavičić, “Classical Logic and Quantum Logic with Multiple and Common Lattice Models,” Adv. Math. Phys. 2016, 6830685 (2016). DOI: 10.1155/2016/6830685
  70. M. Karuza, G. Cantatore, A. Gardikiotis, D.H.H. Hoffmann, Y.K. Semertzidis, K. Zioutas, “KWISP: An ultra-sensitive force sensor for the Dark Energy sector”, Phys. Dark Universe 12,100–104(2016). DOI: 10.1016/j.dark.2016.02.004
  71. M. Stipčević, “Quantum random flip-flop and its applications in random frequency synthesis and true random number generation”, Rev. Sci. Instrum. 87, 035113 (2016). DOI: 10.1063/1.4943668
  72. M. Pavičić, “Deterministic mediated superdense coding with linear optics”, Phys. Lett. A 380, 848–855 (2016). DOI:  10.1016/j.physleta.2015.12.037
  73. N. Demoli, H. Skenderović, M. Stipčević, “Time-averaged photon-counting digital holography”, Opt. Lett. 40, 4245-4248 (2015). DOI: 10.1364/OL.40.004245
  74. M. Stipčević, R. Ursin, “An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response”, Scientific Reports 5, 10214:1-8 (2015). DOI: 10.1038/srep10214
  75. M. Stipčević, J. Bowers, “Spatio-temporal optical random number generator”, Opt. Express 23, 11619-11631 (2015). DOI: 10.1364/OE.23.011619
  76. G. Humer, M. Peev, C. Schaeff, S., M. Stipčević, R. Ursin, “A simple and robust method for estimating afterpulsing in single photon detectors”, J. Lightwave Technol. 33, 3098-3107 (2015). DOI: 10.1109/JLT.2015.2428053
  77. N. Demoli, H. Skenderović, and M. Stipčević, “Digital holography at light levels below noise using a photon-counting approach”, Opt. Lett. 39, 5010–5013 (2014). DOI: 10.1364/OL.39.005010
  78. M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode”, IEEE J. Lightwave Technol. 31, 3591-3596 (2013). DOI: 10.1109/JLT.2013.2286422
  79. M. Pavičić, “In Quantum Direct Communication an Undetectable Eavesdropper Can Always Tell Ψ from Φ Bell States in the Message Mode,” Phys. Rev. A 87 , 042326-1-7 (2013). DOI: 10.1103/PhysRevA.87.042326
  80. N. Megill and M. Pavičić, “Kochen-Specker Sets and Generalized Orthoarguesian Equations,” Ann. Henri Poincare 12, 1417-1429 (2011). DOI: 10.1007/s00023-011-0109-0
  81. M. Pavičić, N. Megill, P. K. Aravind, and M. Waegell, “New class of 4-dim Kochen-Specker sets,” J. Math. Phys. 52, 022104-1-9 (2011). DOI: 10.1063/1.3549586
  82. M. Stipčević, H. Skenderović, D. Gracin, “Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range”, Opt. Express 18,17448-17459 (2010). DOI: 10.1364/OE.18.017448
  83. M. Pavičić, B. D. McKay, N. Megill, and K. Fresl, ” Graph Approach to Quantum Systems,” J. Math. Phys. 51, 102103-1-31 (2010). DOI: 10.1063/1.3491766
  84. M. Pavičić, N.D. Megill, and J.-P. Merlet, “New Kochen-Specker Sets in Four Dimensions,” Phys. Lett. A 374, 2122-2128 (2010). DOI: 10.1016/j.physleta.2010.03.019
  85. M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes”, Appl. Opt. 48, 1705-1714 (2009). DOI: 10.1364/AO.48.001705
  86. M. Stipčević, B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors”, Rev. Sci. Instrum. 78, 045104:1-7 (2007). DOI: 10.1063/1.2720728
  87. M. Stipčević, “Fast nondeterministic random bit generator based on weakly correlated physical events”, Rev. Sci. Instr. 75, 4442-4449(2004). DOI: 10.1063/1.1809295

Knjige i poglavlja u knjigama:

  1. Stipčević M., Ursin R. (2020) “A No-History, Low Latency Photonic Quantum Random Bit Generator for Use in a Loophole Free Bell Tests and General Applications”. In: Kollmitzer C., Schauer S., Rass S., Rainer B. (eds) Quantum Random Number Generation. Quantum Science and Technology. Springer, Cham, DOI 10.1007%2F978-3-319-72596-3_5 Full text
  2. M. Pavičić and Norman D. Megill,  “Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces,” in “Quantum Probability and Randomness,” Andrei Khrennikov and Karl Svozil (Eds.), pp. 6-17, MDPI Books, Basel (2019), http://www.mdpi.com/books/pdfview/book/1247
  3. M. Stipčević, and Ç. K. Koç, “True Random Number Generators”, in “Open Problems in Mathematics and Computational Science”, Koç, Çetin Kaya (Ed.), pp 275-315 Springer 2014, ISBN 978-3-319-10683-0, URL: http://www.springer.com/gp/book/9783319106823
  4. Pavičić, M., “Companion to Quantum Computation and Communication,” Wiley-VCH, Berlin (2013), https://www.wiley.com/en-gb/Companion+to+Quantum+Computation+and+Communication-p-9783527408481
  5. Pavičić, M., “Quantum Computation and Quantum Communication: Theory and Experiments,” Springer, New York (2005),  https://www.springer.com/gp/book/9780387244129 
  6. Pavičić, M., and Megill, N. D., “Quantum Logic and Quantum Computation,” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Structures,” pp. 755-792, Elsevier, Amsterdam (2007). arXiv:abs/0812.3072
  7. Pavičić, M., and Megill, “Is Quantum Logic a Logic?” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Logic,” pp. 23-47 Elsevier, Amsterdam (2008). arXiv:abs/0812.2698

Predavanja na međunarodnim konferencijama:

  1. L. Halić, “The ENUBET monitored neutrino beam and its implementation at CERN”, 25th International Workshop on Neutrinos from Accelerators (NuFact 2024), 16. rujna – 21. rujna 2024., Argonne National Laboratory, Sjedinjene Američke Države
  2. M. Ghosh, “Quantum decoherence at ESSnuSB experiment”, Neutrino Oscillation Workshop (NOW 2024), 2. rujna – 8. rujna 2024., Otranto, Italija
  3. B. Kliček, “Neutrino physics at RBI”, CROHEP meeting, 21. veljače 2024., Zagreb, Hrvatska
  4. B. Kliček, “Neutrino oscillation prospects with ESSnuSB”, Neutrino Workshop at IFIRSE 2023, 17. – 19. srpnja 2023., Quy Nhon, Vijetnam
  5. M. Ghosh, “Present Status and Future Prospects of Neutrino Oscillation Experiments”, 45th International Conference of Theoretical Physics: Matter To The Deepest Recent Developments In Physics Of Fundamental Interactions (MTTD 2023), 17-22 September 2023. Silesia, Poland
  6. J. Clark; R. Wang; S. Bahrani; M. Peranić; O. Alia; M. Loncaric; Ž. Samec; A. Radman; M. Stipcevic; R. Nejabati; D. Simeonidou; J. Rarity; S.K. Joshi, “Polarisation Based Entanglement Distribution Quantum Networking”, 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 2023, pp. 271-274, doi: 10.23919/MIPRO57284.2023.10159792.
  7. M. Ghosh, “Measuring δCP and constraining lepton flavor models at ESSnuSB”, International Workshop on the Origin of Matter-Antimatter Asymmetry (CP 2023), February 12-17, 2023,  Ecole de Physique des Houches, Les Houches, France
  8. H. Skenderović, „Butterfly Wings as an Optomechanical Array for Imaging“, 2022 Digital Holography and 3D Imaging Topical Meeting, 01. –04.08. 2022, Cambridge, UK, DH_2022_Papers, M4A.1
  9. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “Quantum Communication with Entangled Photon Pairs”, 45th Jubilee International Convention on Information, Communication and Electronic Technology MIPRO 2022. Opatija, Croatia; IEEE
    DOI: 10.23919/MIPRO55190.2022.9803653
  10. H. Skenderović, “Phase and Amplitude Reconstruction of Heralded Single Photon Holograms”, Quantum eastern Europe, 5. – 6. 5. 2022. Budapest, Abstracts booklet, p15
  11. Mario StipčevićMateja BatelićEdoardo CharbonClaudio Bruschini, and Ivan Michel Antolović “Random flip-flop: adding quantum randomness to digital circuits for improved cyber security, artificial intelligence and more”, Proc. SPIE 11868, Emerging Imaging and Sensing Technologies for Security and Defence VI, 118680I (12 September 2021); https://doi.org/10.1117/12.2597842
  12. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “Quantum Communication with Entangled Photon Pairs” (Invited talk), MIPRO2021 Conference, 27.9.-1.10.2021., Opatija, Croatia
  13. B. Kliček, “Status of ESSnuSB and summary of workshop”, The 22nd International Workshop on neutrinos from accelerators (NUFACT2021), Invited talk, 6 – 11 September 2021, Cagliari, Italy
  14. D. Abramović, N. Demoli, H. Skenderović, “Single-photon Holography”, oral on-line invited talk, 14th Photonics Workshop, Kopaonik, March 14-17, 2021, Serbia
  15. Batelić, M. Stipčević, “Improved circuits for a random pulse computer”, oral presentation at MIPRO conference, 28 Sept.-2 Oct. 2020. Opatija, Croatia. DOI: 10.23919/MIPRO48935.2020.9245116
  16. M. Pavičić, “Hypergraph-Based Contextuality” (Invited talk), Journées Informatique Quantique 2019, 28 et 29 novembre 2019 – Besançon, France; Abstract; PPT presentation; Recorded talk on Youtube
  17. M. Batelić, “Neuronal pulse computing”, 1st Physics or Physicists (P4P) Students Conference, October 3-6, 2019, Skopje, North Macedonia, Abstract, PPTX Oral Presentation.
  18. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “The source of polarization entangled pairs of photons and testing bell’s inequality”, 7th International Symposium on Optics & its applications (OPTICS-2019) Yerevan, Armenija, September 2019.
  19. B. Kliček, “ESSnuSB Project”, The 27th International Workshop on Weak Interactions and Neutrinos (WIN2019), Neutrino parallel session, 3-8 June 2019, Bari, Italija, download
  20. H. Skenderović, M. Stipčević, N. Demoli, “Digital holography under restricted conditions”, 11th Photonics Workshop, March 2018, Kopaonik, Serbia, Book of Abstracts
  21. M. Pavičić and Norman D. Megill,  “Vector Generation of Contextual Sets,” EPJ Web of Conferences 198, 00009 (2019). DOI:  10.1051/epjconf/201919800009  D. Mogilevtsev (Ed.) Quantum Technology International Conference 2018 (QTech 2018), Paris, France, September 5-7, 2018,; Recorded presentatation on Youtube
  22. M. Pavičić, “Can Two-Way Direct Communication Protocols Be Considered Secure? (Invited Talk), EMN Meeting on Quantum, June 18-22 2017, Vienna, Austria; Program & Abstracts;   Abstract of the paper (A25): pp. 48-99; PPT Presentation; Recorded talk on Youtube.
  23. Megill, N.D. and Pavičić, M., “New Classes of Kochen-Specker Contextual Sets” (Invited Talk), MIPRO 2017,  The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics (IEEE Xplore Digital Library), May 22-26, 2017, Opatija, Croatia, Proceedings of The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics, May 22-26, 2017, Publisher: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc., Red Hook, NY 12571 USA (2017); PPT presentation – Presented by M. Pavičić; Recorded talk on Youtube.
  24. Pavičić, M., “Massive Generation of Contextual Quantum Sets” (Invited Talk), EMN Meeting on Quantum Communication and Quantum Imaging-2016, August 23-26, 2016, Berlin, Germany; pp. 28-29. Web stranica;  Recorded talk on Youtube; Programme and abstracts.
  25. M. Karuza, “KWISP : the radiation pressure sensor”, Identification of Dark Matter 2016, IDM2016,  London 18-22 July 2016.
  26. N. Demoli, H. Skenderović, M. Stipčević and M. Pavičić, “Photon Counting Digital Holography” (Invited Talk), Proc. SPIE 9890, Optical Micro- and Nanometrology VI, 989003-1-6, May 3, 2016
  27. N. Demoli, “Time-averaged holography using Photon-counting approach” (Invited Talk), Imaging and Applied Optics Congress, 25-28 July 2016, Heidelberg, Germany. DOI: 10.1364/DH.2016.DT2E.1
  28. M. Stipčević, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuits for single-photon avalanche photodiodes” (Invited Talk), SPIE  Defense and Commercial Sensing 2016, Baltimore, Maryland, USA, April 17-21, 2016. DOI: 10.1117/12.2227999
  29. D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States”, Invited lecture, Proc. CQO X and QIM 2 2013, 17-20 June 2013, Rochester, NY, USA. DOI: 10.1364/QIM.2013.W2A.2

Posteri na međunarodnim konferencijama:

  1. B. Kliček, “The ESSnuSB/ESSnuSB+ detector design”, Poster presented XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16. – 22. lipnja 2024., Milano, Italija
  2. M. Ghosh, “Physics opportunities at the ESSnuSB/ESSnuSB+ setup”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16. – 22. lipnja 2024., Milano, Italija
  3. D. Barčot, “Possibility of the sterile neutrino search with NINJA”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16. – 22. lipnja 2024., Milano, Italija
  4. L. Halić, “The ENUBET Demonstrator: instrumented decay tunnel prototype for a monitored neutrino beam”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16. – 22. lipnja 2024, Milano, Italija
  5. L. Halić, “The ENUBET experiment”, Poster presented at: International Workshop on the Origin of Matter-Antimatter Asymmetry (CP2023), 12-17 February 2023, Les Houches, France
  6. L. Halić, “ESSnuSB – Detecting CP violation in the 2nd neutrino oscillation maximum”, Poster presented at: The 2nd INFN School on Underground Physics: Theory & Experiments (SOUP2022), 20-24 June 2022, LNGS, Gran Sasso, Italy
  7. K. Krhač, “Constraining ESSnuSB neutrino flux by observing elastic scattering of neutrinos on electrons”, European Physical Society conference on high energy physics (EPS-HEP2021), Poster, 26-30 Jul 2021, Online conference hosted by Universitat Hambrug and DESY
  8. M. Ghosh, “Updated physics reach of the ESSnuSB project”, The 28th International Workshop on Weak Interactions and Neutrinos (WIN2021), Poster, 7-12 Jun 2021, Online conference hosted by the University of Minnesota
  9. M. Batelić, M. Stipčević. “Improved circuits for a biologically-inspired random pulse computer”, Poster presented at: Humboldt-Kolleg conference “Science and educational challenges facing Europe in the next decade”, October 2019.
  10. M. Peranić, M. Lončarić, A. Radman, M. Stipčević. “Experimental generation of quantum entanglement and testing fundamentals of quantum physics”, Poster presented at: Humboldt-Kolleg conference “Science and educational challenges facing Europe in the next decade”, October 2019.
  11. B. Kliček, M. Tenti. “Search for muon neutrino disappearance at the OPERA experiment in the CNGS beam”, Poster presented at: The 21st International Workshop on Neutrinos From Accelerators, 26-31 August  2019, Daegu, Republic of Korea, download
  12. H. Skenderović, M. Stipčević, N. Demoli, “Digital Holography at Restricted Conditions and Photon Counting Approach”, Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conference (CLEO®/Europe-EQEC 2019), Minhen, Njemačka, 23. – 27. 6. 2019.
  13. H. Skenderović, M. Rakić, E. Klarić Sever, S. Vdović, “Temperature rise in human tooth upon drilling by femtosecond pulses”, 13th European Conference on Atoms Molecules and Photons (ECAMP13), Firenca, Italija, 8.-12. 04. 2019.
  14. M. Cokarić Brdovčak, L. Djaković, I. Bertović, M. Lončarić, A. Begonja Jurak, N. Malatesti, I. Jurak. “Several mechanisms contribute to photodynamic inhibition of HSV-1 infection”, Poster presented at: 31st International Conference on Antiviral Research (ICAR) Porto, Portugal, 2018.
  15. M. Mušković, A. Lesar, I. Gobin, M. Lončarić, N. Malatesti. “The effect of singlet oxygen production and lipophilicity of the photosensitizer in photodynamic activity of N-methylated and N- oxidized pyridylporphyrins”, Poster presented at: 5th Young Medicinal Chemist Symposium, Ljubljana, Slovenija, 2018.
  16. M. Cokarić Brdovčak, L. Djaković, I. Bertović, M. Lončarić, A. Jurak Begonja, N. Malatesti, I. Jurak. “A novel cationic amphiphilic porphyrin-based photosensitizer effectively inhibits replication of HSV-1 by several different mechanisms”, Poster presented at: Power of viruses, Poreč, Hrvatska, 2018.
  17. B. Kliček, S. Dusini. “Search for muon neutrino disappearance at the OPERA experiment in the CNGS beam”, Poster presented at: XXVII International Conference on Neurtino Physics and Astrophysics (NEUTRINO 2016), 4-9 July 2016, London, United Kingdom, download

Nastava i vođenje znanstvenog rada:

  1. N. Demoli, “Optics and holography”, Faculty of natural sciences, University of Zagreb, Croatia.
  2. M. Karuza, “Advanced electrodynamics”, “Structure of matter (lab.)”, and “Experimental methods in physics “, University of Rijeka, Croatia.
  3. M. Lončarić, “Laboratorijske vježbe iz geometrijske optike” and  “Laboratorijske vježbe iz fizikalne optike”, University of Applied Sciences Velika Gorica, Velika Gorica, Croatia

Članstva u komisijama doktorata:

  1. Marko Šprem, doktorska disertacija “Optical communication based on wavelength reuse and modulation averaging”, obrana doktorske disertacije održana 12.05.2018. godine na FER-u.

Mentoriranje i komentoriranje doktorata:

  1. (to be added)

 

Pozvani seminari na prestižnim međunarodnim institucijama:

  1. M. Ghosh, “Recent Results of T2K and NOvA and their joint fit”, 9. srpnja 2024., University of Roma Tre, Rim, Italija
  2. M. Ghosh, “Physics opportunities at the ESSnuSB/ESSnuSB+ setup”, predavanje dana 24.5.2024. na Fakultetu za Fiziku, Sveučilišta u Rijeci
  3. L. Halić, “ESSnuSB: the future of European neutrino physics”, predavanje dana 24.5.2024. na Fakultetu za Fiziku, Sveučilišta u Rijeci
  4. L. Halić, “ENUBET: Solving the neutrino cross section problem”, predavanje dana 24.5.2024. na Fakultetu za Fiziku, Sveučilišta u Rijeci
  5. D. Barčot, “What NINJA has that others don’t”, predavanje dana 24.5.2024. na Fakultetu za Fiziku, Sveučilišta u Rijeci
  6. L. Halić, “ENUBET: a nu hope for cross sections”, predavanje dana 15.3.2024. u LP2I Bordeaux, Bordeaux, Francuska
  7. M. Stipčević, “Računalo sa slučajnim impulsima”, predavanje dana 15.12.2022. na Sveučilište u Zagrebu Fakultet elektrotehnike i računarstva (FER)
  8. B. Kliček, “Measuring leptonic CP violation at the second neutrino oscillation maximum with ESSnuSB”, CERN EP Seminar, Talk, 12 Apr 2022
  9. B. Kliček, “The ESSnuSB project: measuring CP violation at the 2nd neutrino oscillation maximum”, High Energy Physics Seminar at the University of Warsaw, 17 Dec 2021
  10. M. Pavičić,”Hypergraph Contextuality,” Invited talk at Journées Informatique Quantique 28/29.11.2019 seminar held at the FEMTO-ST Institute “Franche-Comté Electronics Mechanics Thermal Science and Optics – Sciences and Technologies,” Besancon, France;  Recorded talk on Youtube
  11. M. Stipčević, “Photon detectors, quantum randomness, random flip-flops and their use in ICT security and hyper computation”, May 4, 2016, Special seminar of SEAS hosted by prof. M. Loncar at Harvard SEAS, Lexington, MA, USA. (flyer)
  12. M. Stipčević, “Photon detectors, quantum randomness and their applications in ICT security”, February 19, 2016, Invited seminar hosted by dr. S. Verghese at MIT Lincoln Labs, Lexington, MA, USA.
  13. M. Pavičić,”Two-Way Deterministic Communication Is Like Sending Plain Text under Quantum Protection”, Special Colloquium held at the Department of Physics-Nanooptics, Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin, Germany, on 07.10.2016; Recorded talk on Youtube
  14. M. Stipčević, “Quantum random flip-flop: a novel device for digital and analog signal processing”, March 10, 2015. Invited seminar hosted by Prof. J. E. Bowers, Electrical and computer engineering, University of California Santa Barbara, Santa Barbara, USA (web page)
  15. M. Pavičić, “High-Efficiency Source of Heralded Down-Converted Separated Photons in Arbitrary Bell States”, Colloquium held at Humboldt University of Berlin, Institut for Physics, Germany, on 15.07.2015 (flyer)

Znanstveno-popularna predavanja:

  1. B. Kliček, “ESSnuSB projekt”, Jesenska škola fizike 2019, 12.09.2019., IRB, Zagreb, Hrvatska, download
  2. M. Stipčević, “Kvantna kriptografija”, Jesenska škola fizike 2019, 12.09.2019., IRB, Zagreb, Hrvatska, download
  3. M. Stipčević, “Svjetlost i mi”, predavanje održano u Osnovnoj školi V. Kaleba 12.04.2017., Tisno, hrvatska. download
  4. M. Lončarić, “Neka bude svjetlost”, Seminar u okviru sastanka Nastavne sekcije Hrvatskog fizikalnog društva održanog 2. lipnja 2016 u Zagrebu.
  5. M. Stipčević, “Svjetlost i fenomen kvantnog sprezanja”, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015. download
  6. M. Pavičić, “Fotoni i kvantna kriptografija“, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015.

Patenti:

  1. S. K. Joshi, R. Ursin, W. F. Ziarkash, M. Stipčević, “Method for calibrating a photodetector” , US2021055156B2, datum prijave 20.12.2018., priznat 14.06.2022.

Nagrade i priznanja:

  1. M. Ghosh: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Extracting the best physics sensitivity from T2HKK: A study on optimal detector volume”, Phys. Rev. D 106 (2022), 073006, DOI: 10.1103/PhysRevD.106.073006
  2. M. Ghosh: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Exploring invisible decay at ESSnuSB”, JHEP 05, 133 (2021) DOI: 10.1007/JHEP05(2021)133
  3. M. Ghosh, L. Halić, B. Kliček, K. Krhač, M. Stipčević: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Updated physics performance of the ESSnuSB experiment”, Eur. Phys. J. C 81, 1130 (2021).   DOI: 10.1140/epjc/s10052-021-09845-8
  4. 2020. M. Peranić – Nagrada za najbolje postersko priopćenje na 4. Simpoziju studenata doktorskih studija PMF-a, https://radio.hrt.hr/aod/simpozij-doktorskih-studija-pmf-a/380167/
  5. Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: Eur. Phys. J. C78 (2018) 62:1-8. DOI: 10.1140/epjc/s10052-017-5509-y
  6. Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: Phys. Rev. D 100 (2019) no.5, 051301; DOI: 10.1103/PhysRevD.100.051301
  7. Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: Phys. Rev. Lett. 120, 211801 (2018). DOI: 10.1103/PhysRevLett.120.211801
  8. 2019. M. Peranić – Nagrada za najbolje studentsko usmeno izlaganje na 7. međunarodnoj konferenciji Optika i njene primjene (OPTICS-2019, http://www.ift.uni.wroc.pl/~optics2019/) za prezentaciju “The source of polarization entangled pairs of photons and testing Bell’s inequality”.
  9. 03.07.2019. M. Batelić – Rektorova nagrade Sveučilišta u Zagrebu za akademsku godinu 2018./2019. za rad pod naslovom “Impulsno neuronsko računanje”.
  10. 2019. M. Stipčević – Nagrada za poticanje prijava na kompetitivne projekte, za QuantERA projekt “Single Photon Detectors for Optical Quantum Information Experiments” (SIDOQIE) na natječaju QuantERA 2019
  11. 2018. M. Stipčević – Nagrada Instituta Ruđer Bošković za najbolje radove u 2017. godini, za rad “Advanced active quenching circuit for ultra-fast quantum cryptography”, Opt. Express 25, 21861-21876 (2017).
  12. 2017. M. Stipčević – Član uredništva Editorial Board of Nature’s Scientific Reports
  13. 2016. M. Stipčević – Posebno priznanje za izniman doprinos u jačanju znanstvene izvrsnosti i ugleda Instiuta Ruđer Bošković
  14. 2015. M. Stipčević – “Outstanding reviewer for AIP Review of Scientific Instruments”, Rev. Sci. Instrum. 86, 089801 (2015). DOI: 10.1063/1.4927606
  15. 2015. M. Stipčević – Nagrada ravnatelja IRB za 2015 godinu u kategoriji poticanja kompetitivnih projekata prijavljenih na Obzor 2020 za projekt “iSEQURE”.

Pojavljivanje u medijima:

  1. 2023. https://lidermedia.hr/tehno/carevo-kubitno-ruho-europska-unija-zeli-postati-kvantna-dolina-156430
  2. https://qt.eu/about-quantum-flagship/newsroom/first-intergovernmental-quantum-communication/
  3. https://www.units.it/en/news/first-intergovernmental-quantum-communication
  4. https://opflsoft.net/first-quantum-communication-with-italy-and-slovenia/
  5. https://www.delo.si/novice/znanoteh/prek-kvantne-komunikacije-povezali-tri-mesta/
  6. https://www.vecernji.hr/vijesti/veliki-uspjeh-rudera-na-sastanku-g20-testirali-100-sigurnu-internetsku-vezu-1513714
  7. https://mzo.gov.hr/vijesti/prva-demonstracija-kvantne-komunikacije-izmedju-tri-drzave/4488
  8. https://www.irb.hr/eng/News/First-demonstration-of-quantum-communication-among-three-states
  9. https://mreza.bug.hr/demonstracija-kvantne-komunikacije-izmedu-tri-drzave/
  10. https://www.total-croatia-news.com/politics/55120-croatia-on-g20-summit
  11. https://www.pressreader.com/croatia/vecernji-list-hrvatska/20210807/281505049272168
  12. https://zimo.dnevnik.hr/clanak/probili-led-i-dokazali-da-je-hrvatska-spremna-znanstvenici-s-rudjera-uspjesno-demonstrirali-prvu-javnu-kvantnu-komunikaciju-izmedju-tri-drzave—662045.html
  13. M. Peranić, Radio emisija “Oko znanosti” prvog programa Hrvatskog radija, 28.4.2021., https://radio.hrt.hr/aod/simpozij-doktorskih-studija-pmf-a/380167/
  14. H. Skenderović, Znanstvena emisija HTV “Prometej”, Holografija bioloških struktura, 16.10.2020. Video
  15. H. Skenderović, Intervju u Jutarnjem listu, Hrvati za Nato rade kameru inspiriranu mikrolamelama leptirovih krila, 13.6.2020.
  16. M. Pavičić, “Smrt Mooreovog zakona“, članak po pozivu u časopisu SmartInfoTrend, Vol. 213, str. 10-14 i str. 81, Q4, prosinac 2019.
  17. Tehnologija koja mijenja svijet_ projekt _Quantum Technologies Flagship_ _ Hrvatska – ec.europa.eu
  18. Interview M. Stipčevića u IT magaine BUG MREŽA Prosinac 2019.
  19. Intervju pod naslovom “” u časopisu BUG Mreža 11.11.2019. download
  20. Radio emisija “Oko znanosti” prvog programa Hrvatskog radija pod naslovom “Kvantna kriptografija” emitirana 01.04.2019.  https://radio.hrt.hr/ep/kvantna-kriptografija/280450/
  21. http://spectrum.ieee.org/nanoclast/computing/hardware/a-true-random-number-generator-built-from-carbon-nanotubes-promises-better-security-for-flexible-electronics
  22. http://www.irb.hr/eng/Highlights/On-Demand-Optical-Quantum-Random-Number-Generator-with-Ultra-Fast-Response
  23. http://www.irb.hr/Izdvojene-novosti/Fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  24. http://www.tportal.hr/gadgeterija/tehnologija/387238/Hrvat-osmislio-superbrzi-kvantni-generator-slucajnih-brojeva.html
  25. http://www.vidi.hr/Sci-Tech/Znanost/Novi-hrvatski-kvantni-generator-slucajnih-brojeva
  26. http://cudaprirode.com/portal/bpzn/11389-hrvati-razvili-kvantni-generator-sluajnih-brojeva
  27. http://www.narodni-list.hr/posts/117585006
  28. http://narod.hr/hrvatska/hrvatski-znanstvenik-u-timu-koji-je-razvio-fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  29. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Ve%C4%8Dernji%20list%20-%20Hrvatska/Presscut_17842332.pdf
  30. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Jutarnji%20list/Presscut_17842583.pdf
  31. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Poslovni%20dnevnik/Presscut_17842516.pdf
  32. https://www.hina.hr/vijest/9715949
  33. https://www.vecernji.hr/techsci/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn-1223602
  34. https://zimo.dnevnik.hr/clanak/predstavljen-projekt-zpotpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna—505301.html
  35. http://www.poslovnipuls.com/2018/02/01/predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna/
  36. http://www.vidi.hr/Sci-Tech/Znanost/38-milijuna-kuna-hrvatskom-znanstvenom-centru-CEMS
  37. http://www.cropc.net/it-vijesti/dogadaji/8033-predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna
  38. https://www.obavjestajac.hr/1229179/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn
  39. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3112535&Tip=Tekst&Partner_id=1491
  40. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3130924&Tip=Tekst&Partner_id=1491
  41. http://www.presscut.hr/webpartners/multilang/AudioTekst.asp?ID=3119328&Tip=Tekst&Partner_id=1491

Teme istraživanja

  1. Generiranje kvantno spregnutih parova fotona

G2D_scheme_LRNa Institutu Ruđer Bošković izgradili smo eksperimentalni postav za tzv. parametarsku konverziju frekvencije koristeći diodini laser na 405 nm kojeg smo sami izradili. Fotografija prikazuje ortogonalni presjek dvaju svjetlosnih konusa koji izlaze iz nelinearnog optičkog kristala beta-barijumborata (BBO). Kvantno spregnuti fotoni izlaze u paru (tzv. Einstein-Podolsky-Rosen, EPR) iz dvaju presjeka. Ovaj uređaj daje oko 40.000 EPR parova u sekundi uz određen stupanj nesavršenosti u kvaliteti sprezanja.

Međutim, za većinu planiranih istraživanja, nužan nam je znatno jači i savršeniji izvor energijski degeneriranih (jednakih) EPR parova, napose za istraživanja u: kvantnoj holografiji, kvantno-koreliranoj mikroskopiji, optičkim rezonatorima, hipersprezanju, super brzoj kvantnoj kriptografiji, generiranju slučajnih brojeva, realizaciji Kochen-Speckerovih skupova, potrazi za skrivenim vektorskim bozonima, itd. Preferirano rješenje je izgraditi izvor u VIS-NIR području valne duljine gdje je naša inovativna tehnologija detekcije postiže najbolje performanse, koristeći dobro poznatu tehniku s polarizacijski alternirajućim nelinearnim optičkim kristalima kao što je PPLN.

  1. Istraživanje poboljšanja tehnika detecije fotona

U našoj skupini imamo svjetski prepoznatu stručnost u izgradnji detektora fotona koji kao senzor koriste lavinske fotodiode u Geigerovom režimu rada. Aktivni smo u razvoju inovativnih detektora (brojača) fotona kao i u istraživanju novih metoda za karakterizaciju istih. Istraživanja kojima se bavimo u CEMS-Fotonici orijentirana su ka istraživanju i korištenju kvantnih svojstava pojedinačnih fotona, dakle, gotovo svi naši eksperimenti ovise o detekciji ili brojanju fotona. U tu svrhu gotovo isključivo koristimo detektore fotona razvijene u našem laboratoriju, koje smo prilagođavamo pojedinoj namjeni.

  1. Holografija

Trenutno se za istraživanja u holografiji uglavnom koriste snažni laserski izvori svjetlosti i CCD kamere za snimanje digitalnih holograma. Mi planiramo proširiti holografske tehnike u dva nova smjera: holografiju s brojanjem pojedinačnih fotona i kvantnu holografiju. Za to će su nam potrebni snažan izvor EPR parova i novi tip poziciono razlučive kamere s pikselima osjetljivim na pojedinačne fotone, a oboje su također predmeti našeg istraživanja.

Dok holografiju koristimo za snimanje i rekonstrukciju kompleksnih trodimenzionalnih valnih fronti, interferometrija omogućuje analizu statičkih i dinamičkih promjena u tim valnim frontama. Obje tehnike, i holografija i interferometrija, prošle su kroz nekoliko razvojnih putova. Jedan put ide od klasičnog do digitalnog pristupa (zamjena foto-emulzija CCD senzorima) što je otvorilo nove mogućnosti kao što je izrada digitalnog holografskog interferometrijskog video filma u boji ili monitoring vibracijskih modalnih struktura u stvarnom vremenu. Drugi razvojni put ide od visokih do fundamentalno najnižih intenziteta rasvjete. U svim spomenutim segmentima članovi naše grupe dali su značajan doprinos. Ovaj drugi put vodi do ultra-niske razine svjetla odnosno do holografije s pojedinačnim fotonima i, za sada hipotetske, kvantne holografije. Uvjeti ultra-niske razine rasvjete nameću izuzetno zahtjevne laboratorijske uvjete i tehnike kao što su: posebni svjetlosni izvori, matrični poziciono razlučivi detektori osjetljivi na pojedinačne fotone itd,  te posebno klimatizirani laboratorijski prostor u potpunosti lišen vibracijskih, elektromagnetskih i ostalih smetnji. Zauzvrat, novi istraživački smjerovi mogli bi osigurati originalna teorijska dostignuća, primjene i izume.

  1. Potraga za bozonima iz skrivenog sektora optičkim tehnikama

Skriveni sektori su skupina fundamentalnih polja koja djeluju između sebe ali imaju vrlo slabo međudjelovanje sa vidljivim svijetom,. Skriveni sektori su uobičajeni sastojci teorija koje proširuju Standardni model, nudeći istovremeno objašnjenje njegovih parametara i hijerarhija. Polja u Standardnom modelu dozvoljavaju kinetičko miješanje između Standardnog modela i skrivenih U(1) polja gdje je bozon (za sada hipotetički) koji pripada dodanoj U(1) grupi nazvan parafotonom. Postoji čitavo bogatstvo teorijskih modela koji pružaju dovoljno slobode da bi opravdali postojanje parafotona sa bilo kojim parametrima koji su dozvoljeni eksperimentalnim opažanjima. Kinetičko miješanje osigurava mehanizam za oscilaciju fotona u laki bozon i nazad koja može biti iskorišten u eksperimentima zasnovanim na njegovom slabom međudjelovanju sa vidljivim svijetom. Taj tip eksperimenta se općenito naziva “prolazak svjetlosti kroz zid”. Ako se foton na jednoj strani zida pretvori u parafoton, on neometano može proći kroz neprozirni zid. Na drugoj strani zida, pod uvjetom da iz stanja parafotona prijeđe u stanje fotona, u odgovarajućem detektoru niskog šuma biti će detektiran foton. Vjerojatnost opažanja signala može biti povećana za nekoliko redova veličina uz korištenje optičkih rezonantnih šupljina sa obe strane zida, što je put istraživanja kojim smo mi krenuli.

  1. Kvantna kriptografija i kvantna komunikacija

Kvantna kriptografija omogućuje potpuno siguran prijenos informacije između dvije točke putem tehnike narastanja prethodno postojećeg “malog” zajedničkog ključa. Do sada je dokazano da je sigurnost kvantnih protokola garantirana zakonima kvantne fizike pa čak i ukoliko oni vrijede samo približno, tj. ukoliko naše poznavanje kvantne fizike nije potpuno. Praktični uređaji za kvantnu kriptografiju već su komercijalizirani (IqQuantitue, Švicarska i MagiQ, USA), ali su za sada daleko od praktičnosti i cijenovne pristupačnosti koja bi omogućila širu upotrebu. Da bi se dobili praktični uređaji potreban je znatan napredak i na fundamentalnoj i na tehnološkoj razini.

Aktivno sudjelujemo u međunarodnom projektu SPACEQuest Europske Svemirske Agencije (ESA) čija je misija ostvarenje  kvantne komunikacije na relaciji Zemlja – Svemir (odnosno Međunarodna svemirska postaja ISS) sa svrhom propitivanja utjecaja gravitacije na kvatno sprezanje i mogućnosti ostvarenja kvantne kriotografije između bilo koje dvije točkena Zemlji (vidi ovdje).

  1. Kvantna slučajnost i kvantna kontekstualnost

Slučajnost ili nasumičnost je neprocjenjiv resurs u mnogim područjima znanstvenih istraživanja i praktičnih primjena, naročito u području kriptografije oja je ključ kompjuterske odnosno ICT iliti cyber sigurnosti. Naime, klasična računala generiraju pseudo-slučajne brojeve koji mogu biti korisni u nekim primjenama, no oni su ipak  fundamentalno deterministički i stoga, barem u načelu, predvidljivi što je pogubno za sigurnost kriptografije. Dokazali smo da je kvantna kriptografija nemoguća bez lokalnih privatnih generatora slučajnih brojeva ili nečeg ekvivalentnog tome. Ima više otvorenih pitanja koja se odnose slučajnost. Kao prvo, nemamo definiciju slušajnosti. Zatim tu je pitanje što je izvor slučajnosti u kvantnoj fizici, je li fundamentalan ili izvedeni fenomen, da li je slučajnst potpuna (prava) ili približna, odnosno postoje li skrivene varijable?

Generatori slučajnih brojeva su jedna od vrućih tema istraživanja u posljednjem desetljeću. Međutim oštar nesrazmjer između broja publikacija (83 patenata godišnje u zadnjem desetljeću, 1418 ukupno, bezbroj znanstvenih članaka) i broja od samo pet ostvarenih praktičnih kvantnih generatora slučajnih brojeva koji se ikada pojavili na jasno pokazuje koncepcijsku i tehničku nezrelost ove grane. Prema našem mišljenju, glavni problemi su nedostatak dokaza slučajnost i neponovljivosti rezultata. Naše istraživanje usmjereno je prema uklanjanju ili premošćavanju tih problema.

Kvantna nasumičnost je također implicitno sadržana u kvantnoj kontekstualnosti. Kvantna kontekstualnost je svojstvo kvantnog sistema da svako njegovo mjerenje ima vrijednost neovisnu od drugih kompatibilnih mjerenja izvedenih na sistemu. Stoga rezultati mjerenja kvantnih sistema ne mogu općenito imati predodređene vrijednosti, a skupovi koji posjeduju maksimalnu neodređenost nazivaju se Kochen-Specker-ovim (KS) skupovima. U tom području već imamo značajnih teorijskih rezultata te ćemo nastaviti teorijska i eksperimentalna istraživanja u tom području.

Istraživanje slučajnosti i principa generiranja slučajnih brojeva vrlo lako može rezultirati novim EU projektima, patentabilnim izumima, suradnjom s malim i srednjim poduzećima (SME) te rješenjima za obrambeni sektor odnosno domovinsku sigurnost.

  1. Skalabilno kvantno računanje i kvantni obnavljači (repeateri)

Kvantno računanje je hipotetska računalna paradigma na čijem se praktičnom ostvarenju intenzivno radi u posljednje vrijeme. Mi razvijamo algebarski formalizam koji bi mogao omogućiti univerzalno kvantno računanje pomoću direktnog prevođenja standardnog formalizma Hilbertovog prostora u algebarske kvantne protokole s ugrađenim eksponencijalnim ubrzanjem računanja za određene specijalne klase matematičkih problema.

Usko povezana s time je i mogućnost ostvarenja kvantnog obnavljanja (quantum repeater) koje bi omogućilo bitno povećanje dometa kvantne kriptografije.