Članovi

Sadržaj nije dostupan na hrvatskom For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

G2D core team members in alphabetical order

aumiler Damir Aumiler, Institute of Physics, investigates experimentally and theoretically the interaction of atoms with ultrashort laser pulses, starting with the ‘05 PRL paper that enabled the first frequency-domain visualization of the fs-frequency-comb and initiated the work in the field of frequency comb spectroscopy in Zagreb. Leader of the CALT structural project closely related to CEMS topics.
ban Ticijana Ban, Institute of Physics, with more than 15 years of experience in the field of experimental atomic and molecular physics works with different types of laser system from low-power cw diode laser to high power fs-laser systems. Presently, she runs the cold Rb-atoms experiment, the first ultracold experiment in Croatia and the region.
 bogdanovicradovic Iva Bogdanović Radović, Ruđer Bošković Institute, works on a development and application of different ion beam methods: Rutherford backscattering, Nuclear Reaction Analysis, Time-of-ight Elastic Recoil Detection Analysis, coincident elastic scattering and MeV Secondary Ion Mass Spectroscopy, which are relevant for materials analysis. Last couple of years she also works in a eld of materials modication by MeV ions.
 buljanH Hrvoje Buljan, Department of Physics, Faculty of Science at University of Zagreb, leader of the Modelling package, a theoretical physicist, in the past 5 years worked on plasmons in gr with a focus on plasmonic losses in these structures. The ‘09 PRB paper on this topic is by mid ’15 cited more than 450 times. Expert in the fields of optics and photonics, and ultracold atomic gases.
buljanM Maja Buljan, Ruđer Bošković Institute, works on synthesis, characterization and applications of thin films based on self-assembled nano-particles produced by magnetron sputtering. Starting with the results in PRB ‘09, which present new type of nanoparticle self-assembly process in solid amorphous systems, she works on development and application of these materials in solar cells, their characterization by X-rays and description of their growth by Monte Carlo simulations.
 gajovic Andreja Gajović, Ruđer Bošković Institute, works in the field of nanostructured functional metal oxides including syntheses and characterization of nanostructures for photo-catalysts, oxide ceramics for sensors, ferroelectrics and multiferroic. She also works on Raman spectroscopy and electron microscopy of carbon nanostructures for catalysts.
 halasz Ivan Halasz, Ruđer Bošković Institute, chemist working on mechanochemical synthesis and characterization of solid state crystalline materials. Published in prestigeous top journals such as Nature Chemistry, Angew Chem Int Ed,…
 kralj Marko Kralj, Institute of Physics, G2D research unit leader, responsible for Management & Dissemination, and Synthesis packages. He has expertise in surface physics and works on epitaxial graphene since ‘09, starting with the PRL paper and groundbreaking ARPES experiments on superlattice effects in gr which brought graphene research in Croatia to top internationally competitive level.
 lazic Predrag Lazić, Ruđer Bošković Institute, investigates novel material properties by means of density functional theory and develops new methods to describe experimental findings. The main aim is to develop improved functionals, e.g. vdW-DF in order to include nonlocal correlation crucial for the van der Waals forces playing a key role in graphene and layered 2D materials.
 siber Antonio Šiber, Institute of Physics, working on a broad range of problems in biophysics, phyical virology, soft matter physics and surface science.
 vujicic Nataša Vujičić, Institute of Physics, works in the field of experimental atomic physics and optics with more than 10 years of experience in femtosecond (fs) laser spectroscopy. Recently, she started with investigations of optical properties of 2D materials with fs lasers. Such measurements yield insights into the interactions of photoexcited carriers with other degrees of freedom, such as other carriers and phonons and  allow us to exploit the nonlinear optical response of 2D materials due to fs laser high optical intensities.
 vuletic Tomislav Vuletić, Institute of Physics, leader of the Characterization package, is continually introducing new experimental methods for soft matter physics/nanobiophysics research, consequently enabling this research eld in Croatia: development of impedance spectroscopy, fluorescence correlation spectroscopy, quartz crystal microbalance with dissipation monitoring, small angle X-ray scattering and also involvement in procurement and set-up of the AFM.

Associated members

In conjunction with the core team members, G2D research unit of CEMS has a broad network of associated members, starting from the accompanying postdocs, PhD and Masters students and researchers from around who are interested and/or are involved in 2D materials-driven topics. In the G2D unit we plan to employ additional PhD students with well-defined topics which will be aimed to make interdisciplinary connections between different topics embedded in the G2D research.

One of the most important expected impacts of the G2D unit is on young researchers. G2D will form a highly competitive school for training of young researchers with versatile skills, on timely topics, and in stimulating environment nourishing excellence. We are convinced that the students gaining PhD within G2D will be highly attractive as postdocs in top-notch world scientific institutions (for those seeking academic career this is an inevitable step), but also in Croatian SME/industry connected to the G2D and CEMS.

Oprema

Sadržaj nije dostupan na hrvatskom For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

@Institute of Physics

G2Dcorridor_20151125_6

Corridor in the second wing of the Institute of Physics hosting several G2D labs and offices: 122/II-125/II, 132/II-135/II.

Institute of Physics (IFZ) is the G2D unit of CEMS host institution. The expertise from members at IFZ (solid state physics, surface science, biological physics, atomic, molecular, optical and plasma physics) secures accessibility of capital equipment existing at IFZ in particular the core team members labs: scanning probe techniques STM and AFM under ambient and in vacuum, photoelectron spectroscopy and electron diffraction in vacuum, SAXS/GISAXS X-ray techniques, bio and planar sample fabrication, dielectric spectroscopy, flourescence correlation spectroscopy, femtosecond laser spectroscopy, …

@Ruđer Bošković and Physics Department

The versatility of expertise at IFZ is complemented by the equipment in labs of core members from Ruđer Bošković Institute and Physics Department at Faculty of Science: Raman spectroscopy, scanning and transmission electron microscopy, RBI accelerator facility, GISAX and its modelling, magnetron sputtering, mechanochemistry lab, computational infrastructure, …

@New capital equipment

The aim of the G2D unit is to modernize and upgrade equipment across the teams and in particular to develop new labs which will add value to the joined expertise of team members. The main two new labs to be established within the G2D unit: (1) The “CVD Lab”, based on ~2-3 inch diameter variable pressure CVD furnace and accessories, will enable us routine synthesis of large amounts of monolayer samples, which at the moment we synthesize on smaller scale below 1 inch; (2) “Laboratory for Extreme Mechanics” will enable us to study elasticity phenomena and processes intrinsic to graphene and other (macroscopically) elastic materials.

Radovi i prezentacije

Pozvana konferencijska predavanja

Chemical and mechanical nanoengineering of (epitaxial) graphene, M. Kralj @ Energy Materials and Nanotechnology Qingdao Meeting, Qingdao, China (14.-17.6.2015.)

Epitaksijalni grafen i srodni 2D materijali, M. Kralj @ 9. znanstveni sastanak Hrvatskog fiziklanog društva, Umag, Croatia (5.-7.10.2015.)

Graphene Applications, M. Kralj @ Inovation – Driven Defence Enterprising, Zagreb, Croatia (19.-20.10.2015.)

Odabrani seminari i kolokviji

Chemical and mechanical engineering of epitaxial graphene, 25.3.2015, talk by M. Kralj at Physik-Institut, University of Zurich, Zurich, Switzerland (invited by Thomas Greber)

Engineering epitaxial graphene by adsorption, intercalation and strain, 3.6.2015, talk by M. Kralj at NUS Centre for Advanced 2D Materials, National University of Singapore, Singapore (invited by Slaven Garaj)

Aspects of epitaxial graphene engineering: adsorption, intercalation, strain, and transfer, 10.6.2015, talk by M. Kralj at Institute of Physics, Chinese Academy of Sciences, Beijing, China (invited by Hongjun Gao / Ye-Liang Wang)

Primjene epitaksijalnog grafena: adsorpcija, interkalacija, elastičnost, 13.07.2015., talk by M. Kralj at Mediterranean Institute for Life Sciences, Split, Croatia (invited by Vlasta Bonačić-Koutecky)

Odabrani radovi

Intercalated boostersM. KraljNature Physics 11 (2015) 11–12

Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom, J. Feng, K. Liu, M. Graf, M. Lihter, R. D. Bulushev, D. Dumcenco, D.T.L. Alexander, D. Krasnozhon, T. Vuletić, A. Kis, A. Radenovic, Nano Letters 15 (2015) 3431–3438

Charge Photogeneration in Few-Layer MoS2, T. Borzda, C. Gadermaier, N. Vujičić, et al., Advanced Functional Materials 25 (2015) 3351–3358

Wrinkles of graphene on Ir(111): Macroscopic network ordering and internal multi-lobed structureM. Petrović, J.T. Sadowski, A. Šiber, M. Kralj, Carbon 94 (2015) 856–863

Self-assembly of Ge quantum dots on periodically corrugated Si surfaces, M. Buljan, S. Facsko, I. Delač Marion, V. Mikšić Trontl, M. Kralj, M. Jerčinović, C. Baehtz, A. Muecklich, V. Holy, N. Radić, J. Grenzer, Applied Physics Letters 107 (2015) 203101

Large-scale transfer and characterization of macroscopic periodically nano-rippled graphene, I. Šrut Rakić, D. Čapeta, M. Plodinec, M. Kralj, Carbon 96 (2016) 243–249

Teme istraživanja

  1. Generiranje kvantno spregnutih parova fotona

G2D_scheme_LRNa Institutu Ruđer Bošković izgradili smo eksperimentalni postav za tzv. parametarsku konverziju frekvencije koristeći diodini laser na 405 nm kojeg smo sami izradili. Fotografija prikazuje ortogonalni presjek dvaju svjetlosnih konusa koji izlaze iz nelinearnog optičkog kristala beta-barijumborata (BBO). Kvantno spregnuti fotoni izlaze u paru (tzv. Einstein-Podolsky-Rosen, EPR) iz dvaju presjeka. Ovaj uređaj daje oko 40.000 EPR parova u sekundi uz određen stupanj nesavršenosti u kvaliteti sprezanja.

Međutim, za većinu planiranih istraživanja, nužan nam je znatno jači i savršeniji izvor energijski degeneriranih (jednakih) EPR parova, napose za istraživanja u: kvantnoj holografiji, kvantno-koreliranoj mikroskopiji, optičkim rezonatorima, hipersprezanju, super brzoj kvantnoj kriptografiji, generiranju slučajnih brojeva, realizaciji Kochen-Speckerovih skupova, potrazi za skrivenim vektorskim bozonima, itd. Preferirano rješenje je izgraditi izvor u VIS-NIR području valne duljine gdje je naša inovativna tehnologija detekcije postiže najbolje performanse, koristeći dobro poznatu tehniku s polarizacijski alternirajućim nelinearnim optičkim kristalima kao što je PPLN.

  1. Istraživanje poboljšanja tehnika detecije fotona

U našoj skupini imamo svjetski prepoznatu stručnost u izgradnji detektora fotona koji kao senzor koriste lavinske fotodiode u Geigerovom režimu rada. Aktivni smo u razvoju inovativnih detektora (brojača) fotona kao i u istraživanju novih metoda za karakterizaciju istih. Istraživanja kojima se bavimo u CEMS-Fotonici orijentirana su ka istraživanju i korištenju kvantnih svojstava pojedinačnih fotona, dakle, gotovo svi naši eksperimenti ovise o detekciji ili brojanju fotona. U tu svrhu gotovo isključivo koristimo detektore fotona razvijene u našem laboratoriju, koje smo prilagođavamo pojedinoj namjeni.

  1. Holografija

Trenutno se za istraživanja u holografiji uglavnom koriste snažni laserski izvori svjetlosti i CCD kamere za snimanje digitalnih holograma. Mi planiramo proširiti holografske tehnike u dva nova smjera: holografiju s brojanjem pojedinačnih fotona i kvantnu holografiju. Za to će su nam potrebni snažan izvor EPR parova i novi tip poziciono razlučive kamere s pikselima osjetljivim na pojedinačne fotone, a oboje su također predmeti našeg istraživanja.

Dok holografiju koristimo za snimanje i rekonstrukciju kompleksnih trodimenzionalnih valnih fronti, interferometrija omogućuje analizu statičkih i dinamičkih promjena u tim valnim frontama. Obje tehnike, i holografija i interferometrija, prošle su kroz nekoliko razvojnih putova. Jedan put ide od klasičnog do digitalnog pristupa (zamjena foto-emulzija CCD senzorima) što je otvorilo nove mogućnosti kao što je izrada digitalnog holografskog interferometrijskog video filma u boji ili monitoring vibracijskih modalnih struktura u stvarnom vremenu. Drugi razvojni put ide od visokih do fundamentalno najnižih intenziteta rasvjete. U svim spomenutim segmentima članovi naše grupe dali su značajan doprinos. Ovaj drugi put vodi do ultra-niske razine svjetla odnosno do holografije s pojedinačnim fotonima i, za sada hipotetske, kvantne holografije. Uvjeti ultra-niske razine rasvjete nameću izuzetno zahtjevne laboratorijske uvjete i tehnike kao što su: posebni svjetlosni izvori, matrični poziciono razlučivi detektori osjetljivi na pojedinačne fotone itd,  te posebno klimatizirani laboratorijski prostor u potpunosti lišen vibracijskih, elektromagnetskih i ostalih smetnji. Zauzvrat, novi istraživački smjerovi mogli bi osigurati originalna teorijska dostignuća, primjene i izume.

  1. Potraga za bozonima iz skrivenog sektora optičkim tehnikama

Skriveni sektori su skupina fundamentalnih polja koja djeluju između sebe ali imaju vrlo slabo međudjelovanje sa vidljivim svijetom,. Skriveni sektori su uobičajeni sastojci teorija koje proširuju Standardni model, nudeći istovremeno objašnjenje njegovih parametara i hijerarhija. Polja u Standardnom modelu dozvoljavaju kinetičko miješanje između Standardnog modela i skrivenih U(1) polja gdje je bozon (za sada hipotetički) koji pripada dodanoj U(1) grupi nazvan parafotonom. Postoji čitavo bogatstvo teorijskih modela koji pružaju dovoljno slobode da bi opravdali postojanje parafotona sa bilo kojim parametrima koji su dozvoljeni eksperimentalnim opažanjima. Kinetičko miješanje osigurava mehanizam za oscilaciju fotona u laki bozon i nazad koja može biti iskorišten u eksperimentima zasnovanim na njegovom slabom međudjelovanju sa vidljivim svijetom. Taj tip eksperimenta se općenito naziva “prolazak svjetlosti kroz zid”. Ako se foton na jednoj strani zida pretvori u parafoton, on neometano može proći kroz neprozirni zid. Na drugoj strani zida, pod uvjetom da iz stanja parafotona prijeđe u stanje fotona, u odgovarajućem detektoru niskog šuma biti će detektiran foton. Vjerojatnost opažanja signala može biti povećana za nekoliko redova veličina uz korištenje optičkih rezonantnih šupljina sa obe strane zida, što je put istraživanja kojim smo mi krenuli.

  1. Kvantna kriptografija i kvantna komunikacija

Kvantna kriptografija omogućuje potpuno siguran prijenos informacije između dvije točke putem tehnike narastanja prethodno postojećeg “malog” zajedničkog ključa. Do sada je dokazano da je sigurnost kvantnih protokola garantirana zakonima kvantne fizike pa čak i ukoliko oni vrijede samo približno, tj. ukoliko naše poznavanje kvantne fizike nije potpuno. Praktični uređaji za kvantnu kriptografiju već su komercijalizirani (IqQuantitue, Švicarska i MagiQ, USA), ali su za sada daleko od praktičnosti i cijenovne pristupačnosti koja bi omogućila širu upotrebu. Da bi se dobili praktični uređaji potreban je znatan napredak i na fundamentalnoj i na tehnološkoj razini.

Aktivno sudjelujemo u međunarodnom projektu SPACEQuest Europske Svemirske Agencije (ESA) čija je misija ostvarenje  kvantne komunikacije na relaciji Zemlja – Svemir (odnosno Međunarodna svemirska postaja ISS) sa svrhom propitivanja utjecaja gravitacije na kvatno sprezanje i mogućnosti ostvarenja kvantne kriotografije između bilo koje dvije točkena Zemlji (vidi ovdje).

  1. Kvantna slučajnost i kvantna kontekstualnost

Slučajnost ili nasumičnost je neprocjenjiv resurs u mnogim područjima znanstvenih istraživanja i praktičnih primjena, naročito u području kriptografije oja je ključ kompjuterske odnosno ICT iliti cyber sigurnosti. Naime, klasična računala generiraju pseudo-slučajne brojeve koji mogu biti korisni u nekim primjenama, no oni su ipak  fundamentalno deterministički i stoga, barem u načelu, predvidljivi što je pogubno za sigurnost kriptografije. Dokazali smo da je kvantna kriptografija nemoguća bez lokalnih privatnih generatora slučajnih brojeva ili nečeg ekvivalentnog tome. Ima više otvorenih pitanja koja se odnose slučajnost. Kao prvo, nemamo definiciju slušajnosti. Zatim tu je pitanje što je izvor slučajnosti u kvantnoj fizici, je li fundamentalan ili izvedeni fenomen, da li je slučajnst potpuna (prava) ili približna, odnosno postoje li skrivene varijable?

Generatori slučajnih brojeva su jedna od vrućih tema istraživanja u posljednjem desetljeću. Međutim oštar nesrazmjer između broja publikacija (83 patenata godišnje u zadnjem desetljeću, 1418 ukupno, bezbroj znanstvenih članaka) i broja od samo pet ostvarenih praktičnih kvantnih generatora slučajnih brojeva koji se ikada pojavili na jasno pokazuje koncepcijsku i tehničku nezrelost ove grane. Prema našem mišljenju, glavni problemi su nedostatak dokaza slučajnost i neponovljivosti rezultata. Naše istraživanje usmjereno je prema uklanjanju ili premošćavanju tih problema.

Kvantna nasumičnost je također implicitno sadržana u kvantnoj kontekstualnosti. Kvantna kontekstualnost je svojstvo kvantnog sistema da svako njegovo mjerenje ima vrijednost neovisnu od drugih kompatibilnih mjerenja izvedenih na sistemu. Stoga rezultati mjerenja kvantnih sistema ne mogu općenito imati predodređene vrijednosti, a skupovi koji posjeduju maksimalnu neodređenost nazivaju se Kochen-Specker-ovim (KS) skupovima. U tom području već imamo značajnih teorijskih rezultata te ćemo nastaviti teorijska i eksperimentalna istraživanja u tom području.

Istraživanje slučajnosti i principa generiranja slučajnih brojeva vrlo lako može rezultirati novim EU projektima, patentabilnim izumima, suradnjom s malim i srednjim poduzećima (SME) te rješenjima za obrambeni sektor odnosno domovinsku sigurnost.

  1. Skalabilno kvantno računanje i kvantni obnavljači (repeateri)

Kvantno računanje je hipotetska računalna paradigma na čijem se praktičnom ostvarenju intenzivno radi u posljednje vrijeme. Mi razvijamo algebarski formalizam koji bi mogao omogućiti univerzalno kvantno računanje pomoću direktnog prevođenja standardnog formalizma Hilbertovog prostora u algebarske kvantne protokole s ugrađenim eksponencijalnim ubrzanjem računanja za određene specijalne klase matematičkih problema.

Usko povezana s time je i mogućnost ostvarenja kvantnog obnavljanja (quantum repeater) koje bi omogućilo bitno povećanje dometa kvantne kriptografije.

 

Članovi

Institut Ruđer Bošković, Bijenička 54, HR-10000 Zagreb, Hrvatska (IRB):

mario.stipcevic Dr. sc. Mario Stipčević, znanstveni savjetnik na IRB-u, voditelj istraživačke jedinice CEMS-Fotonika. Ekspertiza i teme istraživanja: novih principi i uređaji za generiranje kvantno spregnutih parova fotona, kvantna kriptografija i kvantna komunikacija, holografija u uvjetima niske razine svjetla, kvantna slučajnost, kvantna kontekstualnost, diodni laseri i detektori fotona.
Dr. sc. Martin Lončarić, znanstveni suradnik na IRB-u. Znanstveno-istraživačke aktivnosti su mu u polju fotonike (plazmonika, optička i strukturna svojstva nanočestica plemenitih metala, metal-dielektrik kompozita i optičkih tankoslojnih sustava te primijenjena kvantna optika). Sudjelovao je u nizu projekata razvoja i proizvodnje optičkih i optoelektroničkih uređaja i instrumentacije s primjenama u znanosti, medicini te za potrebe obrane i nacionalne sigurnosti. Ima veliko iskustvo u pružanju ekspertiza, mjerenja i ispitivanja iz područja optike i fotonike subjektima iz gospodarstva.

Institut za Fiziku, Bijenička 46, HR-10000 Zagreb, Hrvatska (IF):

Dr. sc. Nazif Demoli, znanstveni savjetnik na IF-u. Voditelj Laboratorija za koherentnu optiku na IF-u i voditelj HRzz projekta “Holografija i interferometrija u uvjetima niske razine svjetla”. Njegov rani rad bio je u području optičkog prepoznavanja uzoraka s posebnim interesom za projektiranje i optimizaciju složenih korelacijskih filtara, kao i njihova izvedba pomoću prostornih modulatora svjetla. Njegovi istraživački interesi uključuju: holografiju (klasičnu, digitalnu i kvantnu) i interferometriju (lasersku i holografsku).
Dr. sc. Hrvoje Skenderović, viši znanstveni suradnik na IF-u. Njegove istraživačke aktivnosti uklučuju: femtosekundnu lasersku spektroskopiju, direktno lasersko pisanje ultrakratkim pulsevima, koherentna kontrola pomoću femtosekunf+dnih pulseva, fotoluminescencija tankih slojeva i dihitalna holografija. Posjeduje certifikat Certified Labview Associate Devoloper (CLAD).

Sveučilište u Rijeci, Trg braće Mažuranića 10, HR-51000 Rijeka, Hrvatska

Prof. dr. sc. Marin Karuza je izvanredni profesor na Sveučilištu u Rijeci i voditelj Laboratorija za nelinearnu i kvantnu optiku. Njegovi glavni istraživački intersi su astro fizika i kvantna optika. Područja ekspertize su: optika napose Fabry-Perot optički rezonatori, interferometrija, rezonatori, kontrolne petlje i LabVIEW.

Humboldt University, Unter den Linden 6, 10099 Berlin, Njemačka:

Dr. Sc. Mladen Pavičić, Znanstveni savjetnik. Ekspertiza: kvantna informatika, kvantno računarstvo, kvantna kriptografija, kvantni kontekstualni modeli, generiranje Kochen-Specker-ovih skupova, generiranje i manipuliranje spregnutih fotona.

Radovi i prezentacije

Članci u časopisima koje indeksira Current Contents:

  1. M. Pavičić and Norman D. Megill,  “Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces,” Entropy, 20(12), 928 (2018). DOI: 10.3390/e20120928
  2. N. Agafonova et al. (OPERA Collaboration), “Final results of the search for nu(mu) -> nu(e) oscillations with the OPERA detector in the CNGS beam”, JHEP 06, 151 (2018). DOI: 10.1007/JHEP06(2018)151.
  3. N. Agafonova et al. (OPERA Collaboration), “Final Results of the OPERA Experiment on nu(tau( Appearance in the CNGS Neutrino Beam”, Phys. Rev. Lett. 120, 211801 (2018). DOI: 10.1103/PhysRevLett.120.211801
  4. S. K. Joshi, J. Pienaar, T. Ralph, L. Cacciapuoti, W. McCutcheon, J. Rarity, D. Giggenbach, J. G. Lim, V. Makarov, I. Fuentes, T. Scheidl, E. Beckert, M. Bourennane, D. E. Bruschi, A. Cabello, J. Capmany, A. Carrasco-Casado, E. Diamanti, M. Dusek, D. Elser, A. Gulinatti, R. Hadfield, T. Jennewein, R. Kaltenbaek, M. Krainak, H-K. Lo, C. Marquardt, G. Milburn, M. Peev, A. Poppe, V. Pruneri, R. Renner, C. Salomon, J. Skaar, N. Solomos, M. Stipčević, J. Torres, M. Toyoshima, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, A. Zeilinger, M. Zukowski, R. Ursin, “Space QUEST mission proposal: experimentally testing decoherence due to gravity”, New. J. Phys. 108028.R1 (2018) DOI:  10.1088/1367-2630/aac58b
  5. A. W. Ziarkash, S. K. Joshi, M. Stipčević, and R. Ursin, ”Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors”, Scientific Reports 8, 5076:1-8 (2018). DOI: 10.1038/s41598-018-23398-z
  6. M. Jelovica, P. Grbčić, M. Mušković, M. Sedić, S.K. Pavelić, M. Lončarić, N. Malatesti, “In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism”, Chem. Med. Chem. 13, 360–372 (2018). DOI: 10.1002/cmdc.201700748
  7. N. Agafonova et al., OPERA Collaboration, “Study of charged hadron multiplicities in charged-current neutrino–lead interactions in the OPERA detector”, OPERA Collaboration (N. Agafonova et al.), Eur. Phys. J. C78 (2018) 62:1-8. DOI: 10.1140/epjc/s10052-017-5509-y
  8. M. Pavičić, “Can Two-Way Direct Communication Protocols Be Considered Secure?,” Nanoscale Research Letters, 12:552 (2017). DOI: 10.1186/s11671-017-2314-3
  9. M. Pavičić, O. Benson, A. W. Schell, and J. Wolters, “Mixed basis quantum key distribution with linear optics,” Opt. Express 25(20), 23545-23555 (2017). DOI: 10.1364/OE.25.023545
  10. M. Stipčević, B. G. Christensen, P. G. Kwiat, D. J. Gauthier, “An advanced active quenching circuit for ultra-fast quantum cryptography”, Opt. Express 25, 21861-21876 (2017) DOI: 10.1364/OE.25.021861
  11. M. Pavičić, “Arbitrarily exhaustive hypergraph generation of 4-, 6-, 8-, 16-, and 32-dimensional quantum contextual sets,” Phys. Rev. A 95, 062121-1-25 (2017). DOI:  10.1103/PhysRevA.95.062121
  12. V. Anastassopoulos, …, M. Karuza, … (CAST Collaboration), “New CAST limit on the axion–photon interaction”, Nature Physics 13, 584–590 (2017). DOI: 10.1038/nphys4109
  13. M. Stipčević, N. Demoli, H. Skenderović, M. Lončarić, A. Radman, J. Gladić, and D. Lovrić, “Effective procedure for determination of unknown vibration frequency and phase using time-averaged digital holography”, Opt. Express 25, 10241-10254 (2017). DOI: 10.1364/OE.25.010241
  14. N. Malatesti, A. Harej, S. K. Pavelić, M. Lončarić, H. Zorc, K. Wittine, U. Anđelković, Đ. Josić, “Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4- octadecanamidophenyl)-10, 15, 20-tris(N- methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate”, Photodiagnosis Photodyn Ther., 15, 115-126 (2016). DOI: 10.1016/j.pdpdt.2016.07.003
  15. M. Pavičić, “Classical Logic and Quantum Logic with Multiple and Common Lattice Models,” Adv. Math. Phys. 2016, 6830685 (2016). DOI: 10.1155/2016/6830685
  16. M. Karuza, G. Cantatore, A. Gardikiotis, D.H.H. Hoffmann, Y.K. Semertzidis, K. Zioutas, “KWISP: An ultra-sensitive force sensor for the Dark Energy sector”, Phys. Dark Universe 12,100–104(2016). DOI: 10.1016/j.dark.2016.02.004
  17. M. Stipčević, “Quantum random flip-flop and its applications in random frequency synthesis and true random number generation”, Rev. Sci. Instrum. 87, 035113 (2016). DOI: 10.1063/1.4943668
  18. M. Pavičić, “Deterministic mediated superdense coding with linear optics”, Phys. Lett. A 380, 848–855 (2016). DOI:  10.1016/j.physleta.2015.12.037
  19. N. Demoli, H. Skenderović, M. Stipčević, “Time-averaged photon-counting digital holography”, Opt. Lett. 40, 4245-4248 (2015). DOI: 10.1364/OL.40.004245
  20. M. Stipčević, R. Ursin, “An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response”, Scientific Reports 5, 10214:1-8 (2015). DOI: 10.1038/srep10214
  21. M. Stipčević, J. Bowers, “Spatio-temporal optical random number generator”, Opt. Express 23, 11619-11631 (2015). DOI: 10.1364/OE.23.011619
  22. G. Humer, M. Peev, C. Schaeff, S., M. Stipčević, R. Ursin, “A simple and robust method for estimating afterpulsing in single photon detectors”, J. Lightwave Technol. 33, 3098-3107 (2015). DOI: 10.1109/JLT.2015.2428053
  23. N. Demoli, H. Skenderović, and M. Stipčević, “Digital holography at light levels below noise using a photon-counting approach”, Opt. Lett. 39, 5010–5013 (2014). DOI: 10.1364/OL.39.005010
  24. M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode”, IEEE J. Lightwave Technol. 31, 3591-3596 (2013). DOI: 10.1109/JLT.2013.2286422
  25. M. Pavičić, “In Quantum Direct Communication an Undetectable Eavesdropper Can Always Tell Ψ from Φ Bell States in the Message Mode,” Phys. Rev. A 87 , 042326-1-7 (2013). DOI: 10.1103/PhysRevA.87.042326
  26. N. Megill and M. Pavičić, “Kochen-Specker Sets and Generalized Orthoarguesian Equations,” Ann. Henri Poincare 12, 1417-1429 (2011). DOI: 10.1007/s00023-011-0109-0
  27. M. Pavičić, N. Megill, P. K. Aravind, and M. Waegell, “New class of 4-dim Kochen-Specker sets,” J. Math. Phys. 52, 022104-1-9 (2011). DOI: 10.1063/1.3549586
  28. Stipčević M., Skenderović H., Gracin D., “Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range”, Opt. Express 18,17448-17459 (2010). DOI: 10.1364/OE.18.017448
  29. M. Pavičić, B. D. McKay, N. Megill, and K. Fresl, ” Graph Approach to Quantum Systems,” J. Math. Phys. 51, 102103-1-31 (2010). DOI: 10.1063/1.3491766
  30. M. Pavičić, N.D. Megill, and J.-P. Merlet, “New Kochen-Specker Sets in Four Dimensions,” Phys. Lett. A 374, 2122-2128 (2010). DOI: 10.1016/j.physleta.2010.03.019
  31. M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes”, Appl. Opt. 48, 1705-1714 (2009). DOI: 10.1364/AO.48.001705
  32. M. Stipčević, B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors”, Rev. Sci. Instrum. 78, 045104:1-7 (2007). DOI: 10.1063/1.2720728
  33. M. Stipčević, “Fast nondeterministic random bit generator based on weakly correlated physical events”, Rev. Sci. Instr. 75, 4442-4449(2004). DOI: 10.1063/1.1809295

Knjiga i poglavlja u knjigama:

  1. M. Stipčević, and Ç. K. Koç, “True Random Number Generators”, in “Open Problems in Mathematics and Computational Science”, Koç, Çetin Kaya (Ed.), pp 275-315 Springer 2014, ISBN 978-3-319-10683-0, URL: http://www.springer.com/gp/book/9783319106823
  2. Pavičić, M., “Companion to Quantum Computation and Communication,” Wiley-VCH, Berlin (2013), https://www.wiley.com/en-gb/Companion+to+Quantum+Computation+and+Communication-p-9783527408481
  3. Pavičić, M., “Quantum Computation and Quantum Communication: Theory and Experiments,” Springer, New York (2005),  https://www.springer.com/gp/book/9780387244129 
  4. Pavičić, M., and Megill, N. D., “Quantum Logic and Quantum Computation,” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Structures,” pp. 755-792, Elsevier, Amsterdam (2007). arXiv:abs/0812.3072
  5. Pavičić, M., and Megill, “Is Quantum Logic a Logic?” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Logic,” pp. 23-47 Elsevier, Amsterdam (2008). arXiv:abs/0812.2698

Predavanja na međunarodnim konferencijama:

  1. M. Pavičić and Norman D. Megill,  “Vector Generation of Contextual Sets,” EPJ Web of Conferences 198, 00009 (2019). DOI:  10.1051/epjconf/201919800009  D. Mogilevtsev (Ed.) Quantum Technology International Conference 2018 (QTech 2018), Paris, France, September 5-7, 2018,; Recorded presentatation on Youtube
  2. Pavičić, M., “Can Two-Way Direct Communication Protocols Be Considered Secure? (Invited Talk), EMN Meeting on Quantum, June 18-22 2017, Vienna, Austria; Program & Abstracts;   Abstract of the paper (A25): pp. 48-99; PPT Presentation; Recorded talk on Youtube.
  3. Megill, N.D. and Pavičić, M., “New Classes of Kochen-Specker Contextual Sets” (Invited Talk), MIPRO 2017,  The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics (IEEE Xplore Digital Library), May 22-26, 2017, Opatija, Croatia, Proceedings of The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics, May 22-26, 2017, Publisher: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc., Red Hook, NY 12571 USA (2017); PPT presentation – Presented by M. Pavičić; Recorded talk on Youtube.
  4. Pavičić, M., “Massive Generation of Contextual Quantum Sets” (Invited Talk), EMN Meeting on Quantum Communication and Quantum Imaging-2016, August 23-26, 2016, Berlin, Germany; pp. 28-29. Web stranica;  Recorded talk on Youtube; Programme and abstracts.
  5. M. Karuza, “KWISP : the radiation pressure sensor”, Identification of Dark Matter 2016, IDM2016,  London 18-22 July 2016.
  6. Demoli, N., Skenderović, H., Stipčević, M. and Pavičić, M. “Photon Counting Digital Holography” (Invited Talk), Proc. SPIE 9890, Optical Micro- and Nanometrology VI, 989003-1-6, May 3, 2016
  7. N. Demoli, “Time-averaged holography using Photon-counting approach” (Invited Talk), Imaging and Applied Optics Congress, 25-28 July 2016, Heidelberg, Germany. DOI: 10.1364/DH.2016.DT2E.1
  8. M. Stipčević, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuits for single-photon avalanche photodiodes” (Invited Talk), SPIE  Defense and Commercial Sensing 2016, Baltimore, Maryland, USA, April 17-21, 2016. DOI: 10.1117/12.2227999
  9. D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States”, Invited lecture, Proc. CQO X and QIM 2 2013, 17-20 June 2013, Rochester, NY, USA. DOI: 10.1364/QIM.2013.W2A.2

Nastava i vođenje znanstvenog rada:

  1. N. Demoli, “Optics and holography”, Faculty of natural sciences, University of Zagreb, Croatia.
  2. M. Karuza, “Advanced electrodynamics”, “Structure of matter (lab.)”, and “Experimental methods in physics “, University of Rijeka, Croatia.
  3. M. Lončarić, “Laboratorijske vježbe iz geometrijske optike” and  “Laboratorijske vježbe iz fizikalne optike”, University of Applied Sciences Velika Gorica, Velika Gorica, Croatia

Pozvani seminari na prestižnim međunarodnim institucijama:

  1. M. Stipčević, “Photon detectors, quantum randomness, random flip-flops and their use in ICT security and hyper computation”, May 4, 2016, Special seminar of SEAS hosted by prof. M. Loncar at Harvard SEAS, Lexington, MA, USA. (flyer)
  2. M. Stipčević, “Photon detectors, quantum randomness and their applications in ICT security”, February 19, 2016, Invited seminar hosted by dr. S. Verghese at MIT Lincoln Labs, Lexington, MA, USA.
  3. M. Pavičić,”Two-Way Deterministic Communication Is Like Sending Plain Text under Quantum Protection”, Special Colloquium held at the Department of Physics-Nanooptics, Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin, Germany, on 07.10.2016; Recorded talk on Youtube
  4. M. Stipčević, “Quantum random flip-flop: a novel device for digital and analog signal processing”, March 10, 2015. Invited seminar hosted by Prof. J. E. Bowers, Electrical and computer engineering, University of California Santa Barbara, Santa Barbara, USA (web page)
  5. M. Pavičić, “High-Efficiency Source of Heralded Down-Converted Separated Photons in Arbitrary Bell States”, Colloquium held at Humboldt University of Berlin, Institut for Physics, Germany, on 15.07.2015 (flyer)

Znanstveno-popularna predavanja:

  1. M. Stipčević, “Svjetlost i mi”, predavanje održano u Osnovnoj školi V. Kaleba, Tisno, hrvatska. download
  2. M. Lončarić, “Neka bude svjetlost”, Seminar u okviru sastanka Nastavne sekcije Hrvatskog fizikalnog društva održanog 2. lipnja 2016 u Zagrebu.
  3. M. Stipčević, “Svjetlost i fenomen kvantnog sprezanja”, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015. download
  4. M. Pavičić, “Fotoni i kvantna kriptografija“, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015.

Nagrade i priznanja:

  1. 2017. M. Stipčević – Član uredništva Editorial Board of Nature’s Scientific Reports
  2. 2016. M. Stipčević –  Posebno priznanje za izniman doprinos u jačanju znanstvene izvrsnosti i ugleda Instiuta Ruđer Bošković
  3. 2015. M. Stipčević – “Outstanding reviewer for AIP Review of Scientific Instruments”, Rev. Sci. Instrum. 86, 089801 (2015). DOI: 10.1063/1.4927606
  4. 2015. M. Stipčević – Nagrada ravnatelja IRB za 2015 godinu u kategoriji poticanja kompetitivnih projekata prijavljenih na Obzor 2020 za projekt “iSEQURE”.

Pojavljivanje u medijima:

  1. http://spectrum.ieee.org/nanoclast/computing/hardware/a-true-random-number-generator-built-from-carbon-nanotubes-promises-better-security-for-flexible-electronics
  2. http://www.irb.hr/eng/Highlights/On-Demand-Optical-Quantum-Random-Number-Generator-with-Ultra-Fast-Response
  3. http://www.irb.hr/Izdvojene-novosti/Fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  4. http://www.tportal.hr/gadgeterija/tehnologija/387238/Hrvat-osmislio-superbrzi-kvantni-generator-slucajnih-brojeva.html
  5. http://www.vidi.hr/Sci-Tech/Znanost/Novi-hrvatski-kvantni-generator-slucajnih-brojeva
  6. http://cudaprirode.com/portal/bpzn/11389-hrvati-razvili-kvantni-generator-sluajnih-brojeva
  7. http://www.narodni-list.hr/posts/117585006
  8. http://narod.hr/hrvatska/hrvatski-znanstvenik-u-timu-koji-je-razvio-fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  9. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Ve%C4%8Dernji%20list%20-%20Hrvatska/Presscut_17842332.pdf
  10. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Jutarnji%20list/Presscut_17842583.pdf
  11. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Poslovni%20dnevnik/Presscut_17842516.pdf
  12. https://www.hina.hr/vijest/9715949
  13. https://www.vecernji.hr/techsci/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn-1223602
  14. https://zimo.dnevnik.hr/clanak/predstavljen-projekt-zpotpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna—505301.html
  15. http://www.poslovnipuls.com/2018/02/01/predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna/
  16. http://www.vidi.hr/Sci-Tech/Znanost/38-milijuna-kuna-hrvatskom-znanstvenom-centru-CEMS
  17. http://www.cropc.net/it-vijesti/dogadaji/8033-predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna
  18. https://www.obavjestajac.hr/1229179/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn
  19. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3112535&Tip=Tekst&Partner_id=1491
  20. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3130924&Tip=Tekst&Partner_id=1491
  21. http://www.presscut.hr/webpartners/multilang/AudioTekst.asp?ID=3119328&Tip=Tekst&Partner_id=1491

Znanost o grafenu i srodnim 2D strukturama

G2D_scheme_LRThe mission of the CEMS research unit Science of Graphene and Related 2D Structures (G2D) is to provide a framework for highly competitive level of research on the international level, which is focused on graphene and related 2D materials, to gather a team of scientists
capable of acquiring funding from most competitive EU and other international funding sources, and to promote research motivated by applications of direct interest for the Croatian hi-tech, SME, and industrial sectors. The synergy of the G2D and CEMS as a whole is ubiquitous for achieving those objectives.

The scientific focus of the G2D is on graphene, a 2D crystal of carbon atoms arranged in a honeycomb lattice, and follow-up 2D materials which complement graphene and extend versatility regarding physical and chemical properties and related applications. The research on graphene runs at an intensive pace for almost a decade now, being one of the most active fields in today’s scientific research in general. The potential of 2D materials to revolutionize technologies was recognized globally, which poured considerable research funding around this topic. For example, the Graphene flagship programme by the EU invests one billion Euro in the period 2013-2023 specifically in a direction of future emerging technologies (FET) based on graphene and follow-up 2D materials.

The capacities of the team are based on our own research results on graphene, which stands on equal footing with respect to industrially far more developed countries, as well as on a broad expertise concentrated in the team in versatile topics that can be streamed towards 2D materials-related topics. This enabled us to develop a concept based on a closed cycle of research involving different types of innovative synthesis, a broad range of characterization methods and a strong support in theoretical modelling, thus granting for G2D’s independence and open innovativeness. The strength of the team should be emphasized. All team members are in the middle or early stage of their career, highly productive, with the track records ranking them among top scientists in Croatia.

Fotonika i kvantna optika

Misija Istraživačke jedinice za fotoniku i kvantnu optiku Centra izvrsnosti za napredne materijale i senzore (CEMS-Fotonika) je izvođenje temeljnih istraživanjima u području fotonike i kvantnih efekata u neliearnoj optici te promocija fotonike i optike u Republici Hrvatskoj.

Glavni istraživački interesi naše grupe su: kvantno sprezanje, kvantna kriptografija, holografija u uvjetima niske razine svjetla, foton-bozon interakcija, kvantno računanje, kvantna slučajnost te razvoj tehnologije novih detektora i izvora svjetlosti.

Originalnost našeg pristupa je u korištenju kvantnih efekata, poput emisije i detekcije pojedinačnih fotona ili kvantnog sprezanja, kao ključnih alata u traganju za odgovorima na neka od važnih otvorenih pitanja u području fotonike i kvantne fizike. U fokuse našeg istraživanja spadaju: sigurnost i domet kvantne kriptografije, holografija objekata koji ne reflektiraju svjetlo, potraga za skrivenim bozonskim česticama izvan Standardnog Modela čestica, generiranje slučajnih brojeva, kvantno računanje i kvantno-potpomognuto računanje. Pri izvođenju pokusa koristimo razne fotoničke tehnike: inovativne detektore fotona koje sami razvijamo, pulsne izvore laserskog svjetla, jednostruke i dvostruke Fabry-Perot rezonatore, stabilizirane kontinuirane jednomodne lasere, femtosekundnu spektroskopiju, laersko pisanje te nelinearne efekte u homogenim ili periodičnim nelinearnim kristalima.

Ambiciozni istraživački program CEMS-Fotonike obuhvaća teme koje su na samoj znanstvenoj fronti znanstvenih istraživanja i imaju izvanredan potencijal za nova znanstvena otkrića i generiranje novih tehnologija, inovativnih metoda i uređaja s praktičnim primjenama.