Ostvareno generiranje parova polarizacijski spregnutih fotona

Sorry, this entry is only available in Croatian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

Sa zadovoljstvom objavljujemo da je 9. travnja 2018. istraživači Istraživačke jedinice Fotonika i kvantna optika Znanstvenog centra izvrsnosti za napredne materijale i senzore, na Institutu Ruđer Bošković, dovršili su gradnju eksperimentalnog postava izvora parova spregnutih fotona zasnovanog na procesu spontane parametarske pretvorbe (Engl. spontaneous parametric downconversion (SPDC), kolinearni proces tipa II) fotona valne duljine 405 nm u parove infracrvenih fotona u PPKTP kristalu te optičkom postavu u Sagnac-ovoj konfiguraciji. Izvor stabilno generira koincidentne parove polarizacijski spregnutih fotona.

Iako je kvantno sprezanje fotona poznato, ovaj kontraintuitivni efekt i dalje je predmet intenzivnog istraživanja kako na fundamentalnoj tako i na razini mogućih primjena u kvantnoj komunikaciji, kvantnom računanju i kvantnoj metrologiji. Ostvareni rezultat je ključan za buduća istraživanja ove grupe.

Arbitrarily exhaustive generation of contextual sets

Recently obtained results published in Pavičić, M., Arbitrarily exhaustive hypergraph generation of 4-, 6-, 8-, 16-, and 32-dimensional quantum contextual sets, Physical Review A, 95, 06212–1-25 (2017) will be implemented in a series of experiments in the CEMS Research Unit Photonics and Quantum Optics.

Quantum contextuality is a property of quantum systems not to have predetermined values of their observables, in contrast to classical systems. Take an entangled photon pair. Each of the photons is genuinely unpolarized before we let them through polarizers.  After polarizers, measurements find the photons in definite polarization states. Can we assume that these polarizations were somehow predetermined when the pair was created? The so-called contextual sets of states of photons prove that we cannot. Such sets are not of just of a foundational theoretical interest. Recently, it turned out that the “contextuality is the source of a quantum computer’s power” (Nature; cited in the paper). Therefore, it is important for future applications and implementations to find new classes, instances, and structure of contextual sets as well as to design algorithms and programs for obtaining them. In this paper, arbitrary exhaustive hypergraph-based generation of the most explored contextual sets, Kochen-Specker (KS) ones, is carried out in up to 32 dimensions.

Twelve classes of critical KS sets (the ones that cannot be simplified further) are generated and analyzed, huge number of novel types and instances of them obtained and numerous properties of theirs found. Several thousand times more types and instances of KS sets than previously known are generated. All KS sets in three of the classes and in the upper part of a fourth are novel. The generation was carried out with the help of McKay-Megill-Pavičić (MMP) hypergraph language, algorithms, and programs which generate KS sets (see the feature image for two hypergraphs of 8-dim KS sets; also the figure below) strictly following their definition from the Kochen-Specker theorem, which itself celebrates semicentennial this year. This is in contrast to parity proof based algorithms which prevail in the literature and for which the majority of KS sets and even a whole KS class (as the one shown in the Figure below) are simply invisible.

Priopcenje za javnost povodom opstruiranja financiranja iz EU fondova od strane MZOS-a

Sorry, this entry is only available in Croatian. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.

PRIOPĆENJE ZA JAVNOST Zagreb, 7. lipnja 2016.

Otvoreno pismo ministru znanosti, obrazovanja i sporta Predragu Šustaru:

Opstruiranjem financiranja iz EU fondova hrvatskih znanstvenih centara izvrsnosti ugrožava se 50 milijuna eura iz strukturnih fondova i radna mjesta za hrvatske znanstvenike – traži se hitna reakcija ministra Šustara!

Pedeset milijuna eura, upitna radna mjesta za čak tri stotine doktoranada i postdoktoranada, te riskiranje penala od Europske komisije, samo su dio crne statistike koja ozbiljno prijeti Republici Hrvatskoj (RH), a odvija se u sjeni problema s kurikularnom reformom.

Deset znanstvenih centara izvrsnosti proglašenih od strane Ministarstva znanosti obrazovanje i sporta (MZOS) tijekom 2014. i 2015. godine na prijedlog Nacionalnog vijeća za znanost, visoko obrazovanje i tehnološki razvoj, posljednjih su nekoliko mjeseci postalo taocem MZOS-a.

Naime, RH se strateški odredila kroz Operativni program (OP) za financiranje Znanstvenih centara izvrsnosti (2014 – 2020), te se prema Operativnom programu očekuje 50 milijuna eura iz Europskog fonda za regionalni razvoj (ERDF) koji bi bili na raspolaganju proglašenim centrima.

Kako bi centri mogli iskoristiti europska sredstva, MZOS je obvezan raspisati natječaj. Prvi indikativni rok za raspisivanje natječaja bio je 31. ožujka, te je pomaknut na 1. lipnja 2016., a natječaj još nije raspisan.

Unatoč brojnim službenim molbama za poštivanjem obveza koje su voditelji Znanstvenih centara izvrsnosti posljednjih mjeseci dostavili ministru Šustaru i premijeru Oreškoviću s upozorenjem da je RH preuzela obvezu te je dužna raspisati planirani natječaj iz strukturnih fondova u sklopu kojih bi se izvršila evaluacija planiranih troškova u okviru pojedinih centara, s današnjim datumom MZOS još uvijek nije aktivirao natječaj Europskog fonda za regionalni razvoj (ERDF) koji bi omogućio povlačenje čak 50 milijuna eura za Znanstvene centre izvrsnosti. Time se ozbiljno ugrožava realizacija znanstvenih aktivnosti proglašenih ZCI-a i gubitak 50 milijuna eura iz EU te zapošljavanje 300 mladih stručnjaka.

Podsjetimo, MZOS je proglasio Znanstvene centre izvrsnosti iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti nakon zahtjevnih kriterija javnog natječaja, uključujući opsežne domaće i međunarodne recenzije i intervjue s voditeljima predloženih centara koji su proveli Agencija za znanost i visoko obrazovanje (AZVO) i Nacionalno vijeće za znanost, visoko obrazovanje i tehnološki razvoj. MZOS je potom temeljem članka 29. stavka 2. Zakona o znanstvenoj djelatnosti i visokom obrazovanju (Narodne novine, broj: 123/2003, 105/2004, 174/2004, 2/2007 – Odluka Ustavnog suda Republike Hrvatske, 46/2007, 45/2009,63/2011,94/2013, 139/13 i 101/2014 – Odluka i Rješenje Ustavnog suda Republike Hrvatske) proglasilo znanstvene centre izvrsnosti RH, čiji su članovi izvrsni hrvatski znanstvenici, među nositeljima međunarodne prepoznatljivosti hrvatske znanosti.

Proces prijave, vrednovanja i odabira centara trajao je tri godine, a Vlada RH je nakon provedenog postupka recenzija uskladila program centara s nacionalnim prioritetima i oni su u skladu sa Strategijom pametne specijalizacije (S3). Ovu Strategiju su više od dvije godine izrađivali brojni eksperti iz javnog i privatnog sektora koji se bave istraživanjem i razvojem, te ju je usvojio Hrvatski sabor i Europska komisija za znanost.

Cilj proglašenja centara je bio omogućiti izvrsnim hrvatskim znanstvenicima i institucijama uvjete za vrhunski istraživački rad kroz stabilno i pojačano financiranje te edukaciju mladih znanstvenika i značajan doprinos gospodarstvu RH.

Slijedom navedenog, proizlazi da se nepoštivanjem zadanih obveza od strane MZOS-a te neprovođenjem preuzetih obveza direktno ugrožavaju nacionalni interesi.

Nažalost, jedan od glavnih protivnika ustroja hrvatskih centara izvrsnosti, kao i od strane Europske komisije usvojene pametne specijalizacije (S3) RH, a koja je jedan od glavnih preduvjeta za povlačenje sredstava iz strukturnih fondova, je pomoćnik ministra za znanost dr. sc. Krešimir Zadro.

Poštovani ministre Šustar, otvorenim pismom javnosti obraćamo Vam se ispred svih Znanstvenih centara izvrsnosti (ZCI) iz područja prirodnih, biomedicinskih, biotehničkih i tehničkih znanosti sa zahtjevom da se javno očitujete o razlozima nepoštivanja odluka Vlade RH i neprovođenju usvojenih programa financiranja hrvatskih centara izvrsnosti iz EU fondova te datumu raspisivanja natječaja kako bi se izbjegao crni scenarij.

Vjerujemo da niste spremni potpuno ignorirati izvrsne hrvatske znanstvene skupine i propustiti priliku da se kroz usvojeni program pametne specijalizacije povuku sredstva u iznosu od 50 milijuna eura iz strukturnih fondova.

U situaciji kad se domaća sredstva za znanost i istraživanje sustavno režu, kad se događa egzodus najboljih mladih obrazovanih stručnjaka, znanstvena istraživanja i inovacije preživljavaju velikim dijelom zbog izvrsnosti istraživačkih skupina i velikih napora znanstvenika u povlačenju sredstva iz programa Europske unije, ovakvo opstruiranje rada Znanstvenih centara izvrsnosti da osiguraju europska sredstva za rad i zapošljavanje stručnog kadra je nedopustivo!

S poštovanjem,
voditelji proglašenih Znanstvenih centara izvrsnosti (STEM područja):

Znanstveni centar izvrsnosti za napredne materijale i senzore,
Institut Ruđer Bošković i Institut za fiziku, Zagreb

Dr. sc. Milko Jakšić – Milko.Jaksic@irb.hr
Dr. sc. Mile Ivanda – Mile.Ivanda@irb.hr
Dr. sc. Mario Stipčević – Mario.Stipcevic@irb.hr
Dr. sc. Marko Kralj – mkralj@ifs.hr

Znanstveni centar izvrsnosti za reproduktivnu i regenerativnu medicinu,

Medicinski fakultet, Sveučilište u Zagrebu,
Akademik prof. dr.sc. Slobodan Vukičević – slobodan.vukicevic@mef.hr
Prof. dr. sc. Davor Ježek – davor.jezek@mef.hr

Znanstveni centar izvrsnosti za virusnu imunologiju i cjepiva,
Medicinski fakultet, Sveučilište u Rijeci
Prof. dr. sc. Stipan Jonjić – stipan.jonjic@medri.uniri.hr

Znanstveni centar izvrsnosti za znanost i tehnologiju – STIM, Sveučilište u Splitu
Prof. dr. dr. h.c. Vlasta Bonačić-Koutecky – vbk@cms.hu-berlin.de

Znanstveni centar izvrsnosti za bioraznolikost i molekularno oplemenjivanje bilja, Agronomski fakultet , Sveučilište u Zagrebu
Prof. dr. sc. Zlatko Šatović – zsatovic@agr.hr

Znanstveni centar izvrsnosti za bioprospecting mora
Institut Ruđer Bošković, Zagreb
Dr.sc. Rozelindra Čož-Rakovac – Rozelindra.Coz-Rakovac@irb.hr

Znanstveni centar izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri, Prirodoslovno-matematički fakultet, Sveučilište u Zagrebu

Prof.dr.sc Hrvoje Buljan – hbuljan@phy.hr
Prof. dr. sc. Pavle Pandžić – pandzic@math.hr

Znanstveni centar izvrsnosti za personaliziranu brigu o zdravlju,

Sveučilište Josip Juraj Strossmayer u Osijeku
Prof. dr. sc. Gordan Lauc – glauc@pharma.hr
Prof. dr. sc. Ines Drenjančević – ines.drenjancevic.peric@mefos.hr

Znanstveni centar izvrsnosti za temeljnu, kliničku i translacijsku neuroznanost, Medicinski fakultet, Sveučilište u Zagrebu
Prof. dr. sc. Miloš Judaš – mjudas@hiim.hr

Znanstveni centar izvrsnosti za znanost o podatcima i kooperativne sustave, Fakultet elektrotehnike i računarstva, Sveučilište u Zagrebu

Prof.dr.sc. Sven Lončarić – sven.loncaric@fer.hr
Prof. dr. sc. Ivan Petrović – ivan.petrovic@fer.hr

Priopćenje voditelja proglašenih
            Znanstvenih centara izvrsnosti (STEM područja)             ___________________________________________________________________________________________________

Physics of the Dark Universe Paper “KWISP: An ultra-sensitive force sensor for the Dark Energy sector”

One of the remaining puzzles in physics is the composition of the Universe. Now days we believe that it is made of about 5% ordinary matter, 25% dark matter and 70% of dark energy. Our knowledge about the nature of the dark constituents of the Universe is very feeble. They were introduced to explain some observational data. In particular the dark energy was introduced to explain the observed acceleration in the expansion rate of the Universe. One of the possible mechanisms would be the existence of a light scalar field. To render it compatible with General Relativity in the solar system and “fifth force” searches on Earth they have to be screened. One possibility is a so called “chameleon” mechanism which renders their effective mass dependent on the local matter density. In case they exist they can be produced in the Sun and detected on Earth by a suitable sensor. The detection mechanism relies on the equivalent of the radiation pressure, where solar chameleons impinge on a mobile surface and transfer momentum to it which displaces it from the equilibrium position.

CERN_Courier

Such a sensor has been built and tested in cooperation with the optics laboratory at INFN Trieste where the sensor was situated before transferring it to the final setup at CERN which was noted in the CERN Courier article (see picture). It is based on a thin silicon nitride micro-membrane placed inside a Fabry–Perot optical cavity. By monitoring the cavity characteristic frequencies it is possible to detect the tiny membrane displacements caused by an applied force. Its application to experiments in the Dark Energy sector, such as those for Chameleon-type WISPs, is particularly attractive, as it enables a search for their direct coupling to matter. The sensitivity and the absolute force calibration are given in the article published in the journal Physics of the Dark Universe (impact factor 8.57).

 

Projects

Projects

13. “Study of the use of the ESS facility to accurately measure the neutrino cross-sections for ESSnuSB leptonic CP violation measurements and to perform sterile neutrino searches and astroparticle physics (ESSnuSBplus)”, leader for Croatia B. Kliček, Project No. 101094628, started: 01.01.2023. Financed through HORIZON-INFRA-2022-DEV-01. Total budget: 3 000 000 EUR, RBI part: 159 416 EUR.

12. “Croatian Quantum Communication Infrastructure – CroQCI“, applicant CARNET, scientific leader IRB, project leader Martin Lončarić (IRB). Financed through Horizon Europe with 50% contribution from Croatian RRF fund. Contract Nr. MZO 101091513. Total budget: 9.999.334,04 eur, RBI cca. 3.600.000,00 eur. Started 1.1.2023.

11. “Development of building blocks for new European quantum communication network”, Croatian leader: M. Stipčević, Research project Croatia-Slovenia, HRZZ grant No. IPS-2020-1-2616 started 15.10.2019. Financed by HRZZ (200 kEUR) and ARRS (300 kEUR). Project’s web page: http://cold.ifs.hr/rubidium-vapor-eit-quantum-memories/

10. “Biological and bioinspired structures for multispectral surveillance”, Croatian leader: H. Skenderović, Multi-year Science for Peace NATO Project No. G5618, started 15.10.2019. Financed by NATO

9. Feasibility Study for employing the uniquely powerful ESS linear accelerator to generate an intense neutrino beam for leptonic CP violation discovery and measurement (ESSnuSB), leader for Croatia: B. Kliček. Project No.  777419 (H2020), signed: 22.11.2017., started: 01.01.2018. Financed through Horizon 2020.

8. “Support for top-level research of Centre of excellence for advanced materials and sensing devices“, leaders M. Jakšić, M. Ivanda, M. Kralj, and M. Stipčević. Funded through European structural and 5nvestment funds (ESIF), MSE grant No. KK.01.1.1.01.0001

7.  COST action CA15139 – Combining forces for a novel European facility for neutrino-antineutrino symmetry-violation discovery (EuroNuNet), Action chair: Dr Marcos Dracos (IN2P3 Strasbourg, France), Management Committee Member: Dr Budimir Kliček (Ruđer Bošković Institute, Zagreb, Croatia)

6. “Quantum entanglement for ultra-secure communications“, Leaders: Dr. Mario Stipčević, (CEMS-IRB, Zagreb, Croatia) and Prof. dr. Rupert Ursin (IQOQI, Vienna, Austria). Duration: 2016-2017 (2 years). In this project we address scientific and technological aspects of quantum entanglement which lies in the heart of the secure information exchange, quantum cryptography, random number generation as well as some vibrant scientific research topics related to quantum information and secure communications.

5. “Holography and interferometry under weak illumination” HrZZ – IP-2014-09-7515, 01.05.2015. – 30.04.2019. Leader: Nazif Demoli, Institute of Physics (IF). Associates: Hrvoje Skenderović (IF), Davorin Lovrić (IF), Jadranko Gladić (IF), Mario Rakić (IF), Mario Stipčević (RBI), Ognjen Milat (IF), Mladen Pavičić, Denis Abramović (IF), Marin Karuza (University of Rijeka). Research areas: Optical physics.

4. “TRANSHOW1 Knowledge transfer“, leader M. Lončarić.

3. COST Action MP1406 – Multiscale in modelling and validation for solar photovoltaics (MultiscaleSolar), Action Chair: Dr James Connolly (Génie électrique et électronique de Paris), Management Committee Member: Dr Martin Lončarić, (Ruđer Bošković Institute, Zagreb, Croatia)

2. “ICT COST Action IC1306 Cryptography for Secure Digital Interaction“, Leader: Prof. Claudio Orlandi (Aarhus University, Denmark), Coordinator for Croatia: Dr. Mario Stipčević, Ruđer Bošković Institute.

1. “ICT COST Action CA15220 Quantum Technologies in Space“, Leader: Prof. Angelo Bassi (University of trieste, Italy), Coordinator for Croatia: Dr. Mario Stipčević, Ruđer Bošković Institute

Sci Reports published paper on optical quatnum random number generator

On-Demand Optical Quantum Random Number Generator with Ultra-Fast Response

The study was published by online journal Scientific Reports (IF 5.578) of the Nature Publishing Group.

Mario Stipčević from the Ruđer Bošković Institute (RBI) and his colleague Rupert Ursinfrom the Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, developed a new model of a quantum random number generator (QRNG). This device provides an ultra-fast response upon a bit request (9.8 ns) with 100 percent efficiency upon the trigger, and in-future-of-request random action. None of the generators or generating principles known so far satisfied all those requirements simultaneously to that extent.

On-Demand Optical Quantum Random Number Generator with Ultra-Fast Response

The device works on the principle similar to a coin toss bearing in mind that the process of flipping and reading a coin takes a very short time and the coin never flips away from your hands. With a given state of technology this new QRNG could be reduced to the size of the chip, which would open opportunities for a wide range of applications. This study was published by online journal Scientific Reports (IF 5.578) of the Nature Publishing Group.

Digital data processing in computers, mobile devices or ATM machines has a huge impact on our modern information-based society. Random numbers are essential for cryptographic protocols which are necessary to ensure security, privacy and integrity of communicated data.

Random number generators are essential components for a wide range of applications such as: cryptographic data protection, scientific research, simulations, or real and virtual casinos and online games. For example, in security systems they provide secret keys or tokens for authentications and encryption. They are commonly classified by the source of their randomness.

Unlike frequently used pseudo-random generators, physical random number generators do not depend on complex algorithms, but rather on a physical process to provide true randomness, which means that physical random numbers generators derive random numbers from a physical source of reasonably random process e.g. flipping a coin. This makes them more reliable, since their behaviour could not be replicated in a reasonable amount of time as in the case of pseudo-random generators.

”However, our primary motivation in this study was solving the fundamental problems of quantum entanglement.” – explained Stipčević, a senior research associate in the RBI Laboratory for electromagnetic and weak interactions and Head of the Research Unit for Photonics and Quantum Optics of the Center of Excellence for Advanced Materials and Sensors (CEMS).

MStipcevic - RUrsin

In this paper titled: “An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response” the scientists presented a conceptually simple implementation, which offered a 100 percent efficiency of producing a random bit upon a request and simultaneously exhibited an ultra-low latency.

”We presented a novel type of QRNG which randomness can be obtained by suitable tuning the device controllable parameters in function of the hardware imperfections. It is unique in simultaneously satisfying three characteristics: a very short latency between the random bit request signal and the moment when the bit is generated, all physical processes relevant to generation of a bit happen after the request signal and with a 100 percent efficiency of producing a bit upon a request.

On top of that, we estimated deviation of the QRNG from perfect randomness and demonstrated that generated sequences of random bits pass NIST Statistical Test Suite (STS)1 without post-processing.” – concluded Stipčević and Ursin.

Members

Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia (RBI):

mario.stipcevic Dr. sc. Mario Stipčević, senior scientist at RBI, head of the research unit CEMS-Photonics. Expertise and research topics: new principles and devices for the generation of quantum coupled pairs of photons, quantum cryptography and quantum communication, biomimetic computation, holography at low light levels, quantum randomness, quantum contextuality, diode lasers and photon detectors.
Dr. sc. Martin Lončarić, research associate at RBI. His research activities are in the field of photonics (mainly plasmonics, optical and structural properties of noble metal nanoparticles, metal-dielectric composites and optical thin-film systems; most recently – applied quantum optics). He participated in the development and production of diverse optical and optoelectronic devices and instrumentation with scientific, medical and defence applications. He is responsible for a part of CEMS-Photonics optical test and measurement services.
Dr. sc. Budimir Kliček, scientific associate at RBI. He is doing research in the field of neutrino phyics and application of photonic detectors in that field. He is the leader of RBI group within Horizon 2020 project ESSnuSB, and is representing RBI in ENUBET and JUNO experiments.
Dipl. Ing. Anton Radman, Professional Advisor at Ruđer Bošković institute. Holds a diploma degree in electrical engineering from the Faculty of Electrical Engineering and Computing (FER) in Zagreb. Joined Ruđer Bošković Institute in 2003. His expertise and responsibilities comprise the following: opto-electronic systems circuit and PCB design, design of fast logical systems on FPGA platforms, design of software and hardware for control of instrumentation for scientific and industrial applications. He has rich experience in development of medical instrumentation for photodynamic diagnostics and therapy (MediLED diagnostic and therapeutic devices produced at RBI), and implementation of automation and control (thin film deposition system at optical coating facility).
Mag. phys. Matej Peranić, asistent na IRB-u. Znanstveno-istraživačke aktivnosti iz područja primjenjene kvantne optike.
Željko Samec, RBI Technical Associate in the field of design and production of optomechanical systems with experience of working in the optical industry in the management of the production of ophthalmic lenses and thin films and in the defense industry.
Mateja Batelić, undergraduate student. Her research activities are in the field of quantum optics.

Institue of Physics, Bijenička 46, HR-10000 Zagreb, Croatia (IOP):

Dr. sc. Nazif Demoli, senior scientist at IoP. Head of the Coherent Optics Laboratory at IoP and a leader of the project “Holography and Interferometry under weak illumination”. His early background is in optical pattern recognition with particular interest in designing and optimizing complex correlator filters as well as implementing them using spatial light modulators. His research interests include holography (classical, digital, quantum) and interferometry (laser, holographic).
Dr. sc. Hrvoje Skenderović, senior scientific associate at IoP. His research activities include: Femtosecond laser specroscopy, Direct laser writing with ultrashort pulses, Coherent control by fs pulses, Photoluminescence of thin films and Digital holography. He is Certified Labview Associate Devoloper (CLAD).
Denis Abramović, MSc, research assistant at IoP. His research interests include investigation of fundamental quantum phenomena and their applications, interferometry and holography.

University of Rijeka, Trg braće Mažuranića 10, HR-51000 Rijeka, Croatia

Prof. dr. sc. Marin Karuza is associate professor at University of Rijeka and head of the Laboratory for nonlinear and quantum optics. His maim research interests are astroparticle physics and quantum optics. His areas of expertise are: optics in particular Fabry-Perot optical cavities and interferometry, resonators, control loops and LabView.

Humboldt University, Unter den Linden 6, 10099 Berlin, Deutschland:

mladen.pavicic Dr. Sc. Mladen Pavičić, senior scientist. Areas of expertise: quantum information, quantum computation, quantum cryptography, quantum contextual models, generation of Kochen-Speker sets, generation and manipulation of entangled qubits.

Talks and Publications

Articles in journals indexed in Current Contents:

  1. P. Mishra, R. Majhi, S. K. Pusty, M. Ghosh and R. Mohanta, “Study of long range force in P2SO and T2HKK’’, JHEP 09 (2024), 100, DOI: 10.1007/JHEP09(2024)100
  2. J. Aguilar,….,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević,… et al. [ESSnuSB], “Search for Leptonic CP Violation with the ESSnuSBplus Project,” LHEP 2024 (2024), 517, DOI: 10.31526/lhep.2024.517
  3. J. Aguilar, ….,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević,… et al. [ESSnuSB], “Decoherence in neutrino oscillation at the ESSnuSB experiment’’, JHEP 08 (2024), 063, DOI: 10.1007/JHEP08(2024)063
  4. J. Aguilar, …., M. Ghosh, …, L.Halić, …,et al. [ESSnuSB], “Exploring atmospheric neutrino oscillations at ESSnuSB’’, JHEP 10 (2024), 187  DOI: 10.1007/JHEP10(2024)187
  5. M. Pavičić, M. Waegell, “Generation of Kochen-Specker contextual sets in higher dimensions by dimensional upscaling whose complexity does not scale with dimension and their applications,” Phys. Rev. A, 110(1), 012205-1-16 (2024).    DOI: 10.1103/PhysRevA.110.012205
  6. J. Aguilar, …,M. Ghosh, …, L.Halić, …, B. Kliček, …, M. Stipčević, et al. [ESSnuSB], “Study of nonstandard interactions mediated by a scalar field at the ESSnuSB experiment’’, Phys. Rev. D 109 (2024), 115010, DOI: 10.1103/PhysRevD.109.115010
  7. D.K. Singha, R. Majhi, L. Panda, M. Ghosh and R. Mohanta, “Study of scalar nonstandard interaction at the Protvino to super-ORCA experiment’’, Phys. Rev. D 109 (2024), 095038, DOI: 10.1103/PhysRevD.109.095038
  8. P. Mishra, M.K. Behera, P. Panda, M. Ghosh and R. Mohanta, “Exploring models with modular symmetry in neutrino oscillation experiments’’, JHEP 09 (2023), 144, DOI: 10.1007/JHEP09(2023)144
  9. P. Panda, M. Ghosh and R. Mohanta, “Determination of neutrino mass ordering from Supernova neutrinos with T2HK and DUNE”, JCAP 10 (2023), 033, DOI: 10.1088/1475-7516/2023/10/033
  10. M. Stipčević, “Biomimetic Random Pulse Computation or Why Do Humans Play Basketball Better than Robots?” Biomimetics 8 (2023) 594. DOI: 10.3390/biomimetics8080594
  11. M. Batelić, M. Stipčević, “Stochastic Adder Circuits with Improved Entropy Output.”, Entropy 25 (2023) 1592. DOI: 10.3390/e25121592
  12. M. Stipčević, “Enhancing the Security of the BB84 Quantum Key Distribution Protocol against Detector-Blinding Attacks via the Use of an Active Quantum Entropy Source in the Receiving Station”, Entropy 25 (2023) 1518. DOI: 10.3390/e25111518
  13. F. Acerbi, …, L. Halić, …, B. Kliček, …, M. Stipčević, et. al. “Design and performance of the ENUBET monitored neutrino beam”, Eur. Phys. J.C 83, 964 (2023). DOI: 10.1140/epjc/s10052-023-12116-3
  14. M. Pavičić, “Non-Kochen-Specker Contextuality,” Entropy, 25(8), 1117-1-21 (2023).    DOI: 10.3390/e25081117
  15. Peranić, M., Clark, M., Wang, R. et al. A study of polarization compensation for quantum networks. EPJ Quantum Technol. 10, 30 (2023). DOI: 10.1140/epjqt/s40507-023-00187-w
  16. H. Abele, … , M. Ghosh, … , L. Halić, … , B. Kliček, … , K. Krhač, …, M. Stipčević, et al. “Particle Physics at the European Spallation Source,” Phys. Rept. 1023 (2023), 1-84. DOI: 10.1016/j.physrep.2023.06.001
  17. M. Ghosh, S. Goswami, S. Pan, B. Pavlović, “Implications of the DLMA Solution of θ12 for IceCube Data Using Different Astrophysical Sources,” Universe 2023, 9, 380 (2023). DOI: 10.3390/universe9090380
  18. D. Abramović, N. Demoli, M. Stipčević, and H. Skenderović, “Quantum holography with single-photon states”, Phys. Rev. A 108, 013709. DOI: 10.1103/PhysRevA.108.013709
  19. Alekou, A., …, M. Ghosh, …, L.Halić, …, B. Kliček, …, K. Krhač, …, M. Stipčević, et. al. The ESSnuSB Design Study: Overview and Future Prospects. Universe 2023, 9, 347 (2023).  DOI: 10.3390/universe9080347
  20. D. Raikwal, S. Choubey and M. Ghosh, “Comprehensive study of Lorentz invariance violation in atmospheric and long-baseline experiments”, Phys. Rev. D 107, 115032 (2023). DOI: 10.1103/PhysRevD.107.115032
  21. P. Keshavarzian, …, M. Stipčević, …, “A 3.3-Gb/s SPAD-Based Quantum Random Number Generator,” in IEEE Journal of Solid-State Circuits. 58 (2023) 2632-2647. DOI: 10.1109/JSSC.2023.3274692.
  22. D.K. Singha, M. Ghosh, R. Majhi and R. Mohanta, “Study of light sterile neutrino at the long-baseline experiment options at KM3NeT”, Phys. Rev. D 107 (2023) , 075039. DOI: 10.1103/PhysRevD.107.075039
  23. R. Majhi, D.K. Singha, M. Ghosh and R. Mohanta, “Distinguishing nonstandard interaction and Lorentz invariance violation at the Protvino to super-ORCA experiment”, Phys. Rev. D 107 (2023), 075036 DOI: 10.1103/PhysRevD.107.075036
  24. M. Ghosh and O. Yasuda, “Effect of matter density in T2HK and DUNE”, Nucl. Phys. B 989 (2023), 116142.  DOI: 10.1016/j.nuclphysb.2023.116142
  25. D. Raikwal, S. Choubey and M. Ghosh, “Determining neutrino mass ordering with ICAL, JUNO and T2HK”, Eur. Phys. J. Plus 138 (2023), 110.  DOI: 10.1140/epjp/s13360-023-03697-9
  26. I. Jurak, M. Cokarić Brdovčak, L. Djaković, I. Bertović, K. Knežević, M. Lončarić, A. Jurak Begonja, N. Malatesti, “Photodynamic Inhibition of Herpes Simplex Virus 1 Infection by Tricationic Amphiphilic Porphyrin with a Long Alkyl Chain”, Pharmaceutics (2023), 15, 956
    DOI: 10.3390/pharmaceutics15030956
  27. M. Pavičić (2023), “Quantum Contextuality,” Quantum, 7, 953-1-68 (2023).    DOI: 10.22331/q-2023-17-953
  28. A. Alekou, E. Baussan, A. K. Bhattacharyya, N. Blaskovic Kraljevic, M. Blennow, M. Bogomilov, B. Bolling, E. Bouquerel, O. Buchan and A. Burgman, et al. “The European Spallation Source neutrino super-beam conceptual design report”, Eur. Phys. J. ST 231 (2022)   DOI: 10.1140/epjs/s11734-022-00664-w
  29. P. Panda, M. Ghosh, P. Mishra and R. Mohanta, “Extracting the best physics sensitivity from T2HKK: A study on optimal detector volume”, Phys. Rev. D 106 (2022), 073006.   DOI: 10.1103/PhysRevD.106.073006
  30. M. Pavičić and N. Megill (2022), “Automated Generation of Arbitrarily Many Kochen-Specker and Other Contextual Sets in Odd Dimensional Hilbert Spaces,” Physical Review A106, L060203-1-5 (2022).    DOI: 10.1103/PhysRevA.106.L060203.
  31. S. Choubey, M. Ghosh and D. Raikwal, “Neutrino mass ordering: Circumventing the challenges using synergy between T2HK and JUNO”, Phys. Rev. D 106 (2022), 115013.  DOI: 10.1103/PhysRevD.106.115013
  32. D. Ribezzo, M. Zahidy, I. Vagniluca, N. Biagi, S. Francesconi, T. Occhipinti, L. K. Oxenløwe, M. Lončarić, I. Cvitić, M. Stipčević et al. “Deploying an Inter-European Quantum Network”, Advanced Quantum Technologies 6, 2200061 (2022), DOI: 10.1002/qute.202200061
  33. Y. Pelet, I.V. Puthoor, N. Venkatachalam, S. Wengerowsky, M. Lončarić, S.P. Neumann, B. Liu, Ž. Samec, M. Stipčević, R. Ursin, E. Andersson, J.G. Rarity, D. Aktas, S.K. Joshi, “Unconditionally secure digital signatures implemented in an eight-user quantum network”, New Journal of Physics, 24 (2022) 093038, DOI: 10.1088/1367-2630/ac8e25
  34. N. R. Solomons, A. I. Fletcher, D. Aktas; N. Venkatachalam, S. Wengerowsky, M. Lončarić, S. P. Neumann; B. Liu; Ž. Samec; M. Stipčević, R. Ursin, S. Pirandola, J. G. Rarity, S. K. Joshi, “Scalable Authentication and Optimal Flooding in a Quantum Network”, PRX Quantum, 3(2), 020311 (2022).  DOI: 10.1103/PRXQuantum.3.020311
  35.  A. Mardan Dezfouli, D. Abramović, M. Rakic, and H. Skenderovic, “Detection of the Orbital Angular Momentum State of Light using Sinusoidally-shaped Phase Grating”, Appl. Phys. Lett. 120(20)191106 (2022) DOI: https://doi.org/10.1063/5.0089735
  36. Z. Huang, S. K. Joshi, D. Aktas, C. Lupo, A. O. Quintavalle, N. Venkatachalam, S. Wengerowsky, M. Lončarić, S. P. Neumann, B. Liu, Ž. Samec, L. Kling, M. Stipčević, R. Ursin , J. G. Rarity, “Experimental implementation of secure anonymous protocols on an eight-user quantum key distribution network”, npj Quantum Information, 8, 25 (2022) DOI: 10.1038/s41534-022-00535-1
  37. N. Demoli, D. Abramović, O. Milat, M. Stipčević, H. Skenderović, ” Linearity and optimum-sampling in photon-counting digital holographic microscopy”, Photonics, 9, 68 (2022) DOI:  10.3390/photonics9020068
  38. M. Stipčević, M. Batelić, “Entropy considerations in improved circuits for a biologically-inspired random pulse computer”, Scientific Reports,  12115 (2022) DOI: 10.1038/s41598-021-04177-9
  39. A. Alekou, …, M. Ghosh, …, L. Halić, …, B. Kliček, K. Krhač, …, M. Stipčević, … (ESSnuSB Collaboration), “Updated physics performance of the ESSnuSB experiment“, Eur. Phys. J. C 81, 1130 (2021). 10.1140/epjc/s10052-021-09845-8
  40. M. Mušković, I. Ćavar, A. Lesar, M. Lončarić, N. Malatesti, I. Gobin, “Photodynamic Inactivation of Legionella Pneumophila Biofilm Formation by Cationic Tetra- and Tripyridylporphyrins in Waters of Different Hardness”, International Journal of Molecular Sciences, 22 (2021), 16, 9095; DOI: 10.3390/ijms22169095
  41. M. Ghosh, S. Goswami, A. Mukherjee, “Implications of the Dark-LMA solution for neutrino mass matrices”, Nucl. Phys. B 969, 115460 (2021), DOI: 10.1016/j.nuclphysb.2021.115460
  42. S. Choubey, M. Ghosh, D. Kempe and T. Ohlsson, “Exploring invisible neutrino decay at ESSnuSB”, JHEP 05, 133 (2021), DOI: 10.1007/JHEP05(2021)133
  43. M. Pavičić, “How Secure are Two-Way Ping-Pong and LM05 QKD Protocols under a Man-in-the-Middle Attack?,” Entropy, 23(2), 163 (2021). DOI: 10.3390/e23020163
  44. Siddarth K. Joshi, Djeylan Aktas, Sören Wengerowsky, Martin Lončarić, Sebastian Philipp Neumann, Bo Liu, Thomas Scheidl, Guillermo Currás Lorenzo, Željko Samec, Laurent Kling, Alex Qiu, Mohsen Razavi, Mario Stipčević, John G. Rarity, Rupert Ursin, “A trusted node–free eight-user metropolitan quantum communication network”, Science Advances, 6 (2020), 36; eaba0959, DOI: 10.1126/sciadv.aba0959
  45. A. Lesar, M. Mušković, G. Begić, M. Lončarić, D. Tomić Linšak, N. Malatesti, I. Gobin, “Cationic Porphyrins as Effective Agents in Photodynamic Inactivation of Opportunistic Plumbing Pathogen Legionella pneumophila”, International Journal of Molecular Sciences, 21 (2020), 15; 5367, DOI: 10.3390/ijms21155367
  46. F. Acerbi et. al. (ENUBET Collaboration), “Polysiloxane-based scintillators for shashlik calorimeters”, Nucl. Instrum. Meth. A956 (2020) 163379, DOI: 10.1016/j.nima.2019.163379
  47. M. Pavičić,  “Hypergraph Contextuality,” Entropy, 21(11), 1107 (2019). DOI: 10.3390/e21111107
  48. S. Arguedas Cuendis, … M. Karuza (corresponding author), …, “First results on the search for chameleons with the KWISP detector at CAST”, Physics of the Dark Universe 26, art. No. 100367 (2019). DOI: 10.1016/j.dark.2019.100367
  49. N. Agafonova et al. (OPERA Collaboration), “Measurement of the cosmic ray muon flux seasonal variation with the OPERA detector”, Journal of cosmology and astroparticle physics, 2019 (2019), 10; 003, 12. DOI: 10.1088/1475-7516/2019/10/003
  50. N. Agafonova et al. (OPERA Collaboration), “Final results on neutrino oscillation parameters from the OPERA experiment in the CNGS beam”, Phys. Rev. D 100 (2019) no.5, 051301; DOI: 10.1103/PhysRevD.100.051301
  51. N. Demoli, J. Gladić, D. Lovrić, D. Abramović, “Digital holography using LCOS microdisplay as input three-dimensional object,” Optik 194, 162877 (2019). DOI: 10.1016/j.ijleo.2019.05.083
  52. M. Pavičić, Mordecai Waegell,  Norman D. Megill and P.K. Aravind, “Automated generation of Kochen-Specker sets,” Scientific Reports,  9,  6765 (2019); DOI: 10.1038/s41598-019-43009-9
  53. Matej Par, Igor Repusic, Hrvoje Skenderovic, and Zrinka Tarle,  “Wavelength-dependent light transmittance in resin composites: practical implications for curing units with different emission spectra”, Clinical Oral Investigations, 23 (2019), 12; 4399–4409, DOI: 10.1007/s00784-019-02896-y
  54. M. Pavičić and Norman D. Megill,  “Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces”, Entropy, 20(12),928 (2018). DOI: 10.3390/e20120928
  55. T. A. Hamed, M. Lončarić et al. “Multiscale in modelling and validation for solar photovoltaics”, EPJ Photovolt. 9, 10 (2018). DOI: 10.1051/epjpv/2018008
  56. N. Agafonova et al. (OPERA Collaboration), “Final results of the search for nu(mu) -> nu(e) oscillations with the OPERA detector in the CNGS beam”, JHEP 06, 151 (2018). DOI: 10.1007/JHEP06(2018)151.
  57. N. Agafonova et al. (OPERA Collaboration), “Final Results of the OPERA Experiment on nu(tau) Appearance in the CNGS Neutrino Beam”, Phys. Rev. Lett. 120, 211801 (2018). DOI: 10.1103/PhysRevLett.120.211801
  58. S. K. Joshi, J. Pienaar, T. Ralph, L. Cacciapuoti, W. McCutcheon, J. Rarity, D. Giggenbach, J. G. Lim, V. Makarov, I. Fuentes, T. Scheidl, E. Beckert, M. Bourennane, D. E. Bruschi, A. Cabello, J. Capmany, A. Carrasco-Casado, E. Diamanti, M. Dusek, D. Elser, A. Gulinatti, R. Hadfield, T. Jennewein, R. Kaltenbaek, M. Krainak, H-K. Lo, C. Marquardt, G. Milburn, M. Peev, A. Poppe, V. Pruneri, R. Renner, C. Salomon, J. Skaar, N. Solomos, M. Stipčević, J. Torres, M. Toyoshima, P. Villoresi, I. Walmsley, G. Weihs, H. Weinfurter, A. Zeilinger, M. Zukowski, R. Ursin, “Space QUEST mission proposal: experimentally testing decoherence due to gravity”, New. J. Phys. 20, 108028.R1 (2018) DOI:  10.1088/1367-2630/aac58b
  59. A. W. Ziarkash, S. K. Joshi, M. Stipčević, and R. Ursin, ”Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors”, Scientific Reports 8, 5076:1-8 (2018). DOI: 10.1038/s41598-018-23398-z
  60. M. Jelovica, P. Grbčić, M. Mušković, M. Sedić, S.K. Pavelić, M. Lončarić, N. Malatesti, “In Vitro Photodynamic Activity of N-Methylated and N-Oxidised Tripyridyl Porphyrins with Long Alkyl Chains and Their Inhibitory Activity in Sphingolipid Metabolism”, Chem. Med. Chem. 13, 360–372 (2018). DOI: 10.1002/cmdc.201700748
  61. N. Agafonova et al., OPERA Collaboration, “Study of charged hadron multiplicities in charged-current neutrino–lead interactions in the OPERA detector”, OPERA Collaboration (N. Agafonova et al.), Eur. Phys. J. C78 (2018) 62:1-8. DOI: 10.1140/epjc/s10052-017-5509-y
  62. M. Pavičić, “Can Two-Way Direct Communication Protocols Be Considered Secure?,” Nanoscale Research Letters, 12:552 (2017). DOI: 10.1186/s11671-017-2314-3
  63. M. Pavičić, O. Benson, A. W. Schell, and J. Wolters, “Mixed basis quantum key distribution with linear optics,” Opt. Express 25(20), 23545-23555 (2017). DOI: 10.1364/OE.25.023545
  64. M. Stipčević, B. G. Christensen, P. G. Kwiat, D. J. Gauthier, “Advanced active quenching circuit for ultra-fast quantum cryptography”, Opt. Express 25, 21861-21876 (2017) DOI: 10.1364/OE.25.021861
  65. M. Pavičić, “Arbitrarily exhaustive hypergraph generation of 4-, 6-, 8-, 16-, and 32-dimensional quantum contextual sets,” Phys. Rev. A 95, 062121-1-25 (2017). DOI:  10.1103/PhysRevA.95.062121
  66. V. Anastassopoulos, …, M. Karuza, … (CAST Collaboration), “New CAST limit on the axion–photon interaction”, Nature Physics 13, 584–590 (2017). DOI: 10.1038/nphys4109
  67. M. Stipčević, N. Demoli, H. Skenderović, M. Lončarić, A. Radman, J. Gladić, and D. Lovrić, “Effective procedure for determination of unknown vibration frequency and phase using time-averaged digital holography”, Opt. Express 25, 10241-10254 (2017). DOI: 10.1364/OE.25.010241
  68. N. Malatesti, A. Harej, S. K. Pavelić, M. Lončarić, H. Zorc, K. Wittine, U. Anđelković, Đ. Josić, “Synthesis, characterisation and in vitro investigation of photodynamic activity of 5-(4- octadecanamidophenyl)-10, 15, 20-tris(N- methylpyridinium-3-yl)porphyrin trichloride on HeLa cells using low light fluence rate”, Photodiagnosis Photodyn Ther., 15, 115-126 (2016). DOI: 10.1016/j.pdpdt.2016.07.003
  69. M. Pavičić, “Classical Logic and Quantum Logic with Multiple and Common Lattice Models,” Adv. Math. Phys. 2016, 6830685 (2016). DOI: 10.1155/2016/6830685
  70. M. Karuza, G. Cantatore, A. Gardikiotis, D.H.H. Hoffmann, Y.K. Semertzidis, K. Zioutas, “KWISP: An ultra-sensitive force sensor for the Dark Energy sector”, Phys. Dark Universe 12,100–104(2016). DOI: 10.1016/j.dark.2016.02.004
  71. M. Stipčević, “Quantum random flip-flop and its applications in random frequency synthesis and true random number generation”, Rev. Sci. Instrum. 87, 035113 (2016). DOI: 10.1063/1.4943668
  72. M. Pavičić, “Deterministic mediated superdense coding with linear optics”, Phys. Lett. A 380, 848–855 (2016). DOI:  10.1016/j.physleta.2015.12.037
  73. N. Demoli, H. Skenderović, M. Stipčević, “Time-averaged photon-counting digital holography”, Opt. Lett. 40, 4245-4248 (2015). DOI: 10.1364/OL.40.004245
  74. M. Stipčević, R. Ursin, “An On-Demand Optical Quantum Random Number Generator with In-Future Action and Ultra-Fast Response”, Scientific Reports 5, 10214:1-8 (2015). DOI: 10.1038/srep10214
  75. M. Stipčević, J. Bowers, “Spatio-temporal optical random number generator”, Opt. Express 23, 11619-11631 (2015). DOI: 10.1364/OE.23.011619
  76. G. Humer, M. Peev, C. Schaeff, S., M. Stipčević, R. Ursin, “A simple and robust method for estimating afterpulsing in single photon detectors”, J. Lightwave Technol. 33, 3098-3107 (2015). DOI: 10.1109/JLT.2015.2428053
  77. N. Demoli, H. Skenderović, and M. Stipčević, “Digital holography at light levels below noise using a photon-counting approach”, Opt. Lett. 39, 5010–5013 (2014). DOI: 10.1364/OL.39.005010
  78. M. Stipčević, D. Wang, and R. Ursin, “Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode”, IEEE J. Lightwave Technol. 31, 3591-3596 (2013). DOI: 10.1109/JLT.2013.2286422
  79. M. Pavičić, “In Quantum Direct Communication an Undetectable Eavesdropper Can Always Tell Ψ from Φ Bell States in the Message Mode,” Phys. Rev. A 87 , 042326-1-7 (2013). DOI: 10.1103/PhysRevA.87.042326
  80. N. Megill and M. Pavičić, “Kochen-Specker Sets and Generalized Orthoarguesian Equations,” Ann. Henri Poincare 12, 1417-1429 (2011). DOI: 10.1007/s00023-011-0109-0
  81. M. Pavičić, N. Megill, P. K. Aravind, and M. Waegell, “New class of 4-dim Kochen-Specker sets,” J. Math. Phys. 52, 022104-1-9 (2011). DOI: 10.1063/1.3549586
  82. M. Stipčević, H. Skenderović, D. Gracin, “Characterization of a novel avalanche photodiode for single photon detection in VIS-NIR range”, Opt. Express 18,17448-17459 (2010). DOI: 10.1364/OE.18.017448
  83. M. Pavičić, B. D. McKay, N. Megill, and K. Fresl, ” Graph Approach to Quantum Systems,” J. Math. Phys. 51, 102103-1-31 (2010). DOI: 10.1063/1.3491766
  84. M. Pavičić, N.D. Megill, and J.-P. Merlet, “New Kochen-Specker Sets in Four Dimensions,” Phys. Lett. A 374, 2122-2128 (2010). DOI: 10.1016/j.physleta.2010.03.019
  85. M. Stipčević, “Active quenching circuit for single-photon detection with Geiger mode avalanche photodiodes”, Appl. Opt. 48, 1705-1714 (2009). DOI: 10.1364/AO.48.001705
  86. M. Stipčević, B. Medved Rogina, “Quantum random number generator based on photonic emission in semiconductors”, Rev. Sci. Instrum. 78, 045104:1-7 (2007). DOI: 10.1063/1.2720728
  87. M. Stipčević, “Fast nondeterministic random bit generator based on weakly correlated physical events”, Rev. Sci. Instr. 75, 4442-4449(2004). DOI: 10.1063/1.1809295

Books or chapters in books:

  1. Stipčević M., Ursin R. (2020) “A No-History, Low Latency Photonic Quantum Random Bit Generator for Use in a Loophole Free Bell Tests and General Applications”. In: Kollmitzer C., Schauer S., Rass S., Rainer B. (eds) Quantum Random Number Generation. Quantum Science and Technology. Springer, Cham, DOI 10.1007%2F978-3-319-72596-3_5 Full text
  2. M. Pavičić and Norman D. Megill,  “Vector Generation of Quantum Contextual Sets in Even Dimensional Hilbert Spaces,” in “Quantum Probability and Randomness,” Andrei Khrennikov and Karl Svozil (Eds.), pp. 6-17, MDPI Books, Basel (2019), http://www.mdpi.com/books/pdfview/book/1247
  3. M. Stipčević, and Ç. K. Koç, “True Random Number Generators”, in “Open Problems in Mathematics and Computational Science”, Koç, Çetin Kaya (Ed.), pp 275-315 Springer 2014, ISBN 978-3-319-10683-0, URL: http://www.springer.com/gp/book/9783319106823
  4. Pavičić, M., “Companion to Quantum Computation and Communication,” Wiley-VCH, Berlin (2013), https://www.wiley.com/en-gb/Companion+to+Quantum+Computation+and+Communication-p-9783527408481
  5. Pavičić, M., “Quantum Computation and Quantum Communication: Theory and Experiments,” Springer, New York (2005),  https://www.springer.com/gp/book/9780387244129 
  6. Pavičić, M., and Megill, N. D., “Quantum Logic and Quantum Computation,” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Structures,” pp. 755-792, Elsevier, Amsterdam (2007). arXiv:abs/0812.3072
  7. Pavičić, M., and Megill, “Is Quantum Logic a Logic?” in Kurt Engesser, Dov Gabbay, and Daniel Lehmann (eds.), “Handbook of Quantum Logic and Quantum Structures: Quantum Logic,” pp. 23-47 Elsevier, Amsterdam (2008). arXiv:abs/0812.2698

Talks at international conferences:

  1. L. Halić, “The ENUBET monitored neutrino beam and its implementation at CERN”, 25th International Workshop on Neutrinos from Accelerators (NuFact 2024), 16 Sep – 21 Sep 2024., Argonne National Laboratory, USA
  2. “Quantum decoherence at ESSnuSB experiment”, Neutrino Oscillation Workshop (NOW 2024), 2 Sep – 8 Sep 2024, Otranto, Italy
  3. B. Kliček, “Neutrino physics at RBI”, CROHEP meeting, 21 February 2024., Zagreb, Croatia
  4. B. Kliček, “Neutrino oscillation prospects with ESSnuSB”, Neutrino Workshop at IFIRSE 2023, 17–19 July 2023., Quy Nhon, Vietnam
  5. M. Ghosh, “Present Status and Future Prospects of Neutrino Oscillation Experiments”, 45th International Conference of Theoretical Physics: Matter To The Deepest Recent Developments In Physics Of Fundamental Interactions (MTTD 2023), 17-22 September 2023. Silesia, Poland
  6. J. Clark; R. Wang; S. Bahrani; M. Peranić; O. Alia; M. Loncaric; Ž. Samec; A. Radman; M. Stipcevic; R. Nejabati; D. Simeonidou; J. Rarity; S.K. Joshi, “Polarisation Based Entanglement Distribution Quantum Networking”, 2023 46th MIPRO ICT and Electronics Convention (MIPRO), Opatija, Croatia, 2023, pp. 271-274, doi: 10.23919/MIPRO57284.2023.10159792.
  7. M. Ghosh, “Measuring δCP and constraining lepton flavor models at ESSnuSB”, International Workshop on the Origin of Matter-Antimatter Asymmetry (CP 2023), February 12-17, 2023,  Ecole de Physique des Houches, Les Houches, France
  8. H. Skenderović, „Butterfly Wings as an Optomechanical Array for Imaging“, 2022 Digital Holography and 3D Imaging Topical Meeting, 01. –04.08. 2022, Cambridge, UK, DH_2022_Papers, M4A.1
  9. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “Quantum Communication with Entangled Photon Pairs”, 45th Jubilee International Convention on Information, Communication and Electronic Technology MIPRO 2022. Opatija, Croatia; IEEE
    DOI: 10.23919/MIPRO55190.2022.9803653
  10. H. Skenderović, “Phase and Amplitude Reconstruction of Heralded Single Photon Holograms”, Quantum eastern Europe, 5. – 6. 5. 2022. Budapest, Abstracts booklet, p15
  11. Mario StipčevićMateja BatelićEdoardo CharbonClaudio Bruschini, and Ivan Michel Antolović “Random flip-flop: adding quantum randomness to digital circuits for improved cyber security, artificial intelligence and more”, Proc. SPIE 11868, Emerging Imaging and Sensing Technologies for Security and Defence VI, 118680I (12 September 2021); https://doi.org/10.1117/12.2597842
  12. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “Quantum Communication with Entangled Photon Pairs” (Invited talk), MIPRO2021 Conference, 27.9.-1.10.2021., Opatija, Croatia
  13. B. Kliček, “Status of ESSnuSB and summary of workshop”, The 22nd International Workshop on neutrinos from accelerators (NUFACT2021), Invited talk, 6 – 11 September 2021, Cagliari, Italy
  14. D. Abramović, N. Demoli, H. Skenderović, “Single-photon Holography”, oral on-line invited talk, 14th Photonics Workshop, Kopaonik, March 14-17, 2021, Serbia
  15. Batelić, M. Stipčević, “Improved circuits for a random pulse computer”, oral presentation at MIPRO conference, 28 Sept.-2 Oct. 2020. Opatija, Croatia. DOI: 10.23919/MIPRO48935.2020.9245116
  16. M. Pavičić, “Hypergraph-Based Contextuality” (Invited talk), Journées Informatique Quantique 2019, 28 et 29 novembre 2019 – Besançon, France; Abstract; PPT presentation; Recorded talk on Youtube
  17. M. Batelić, “Neuronal pulse computing”, 1st Physics or Physicists (P4P) Students Conference, October 3-6, 2019, Skopje, North Macedonia, Abstract, PPTX Oral Presentation.
  18. M. Peranić, M. Lončarić, A. Radman, M. Stipčević, “The source of polarization entangled pairs of photons and testing bell’s inequality”, 7th International Symposium on Optics & its applications (OPTICS-2019) Yerevan, Armenija, September 2019.
  19. B. Kliček, “ESSnuSB Project”, The 27th International Workshop on Weak Interactions and Neutrinos (WIN2019), Neutrino parallel session, 3-8 June 2019, Bari, Italija, download
  20. H. Skenderović, M. Stipčević, N. Demoli, “Digital holography under restricted conditions”, 11th Photonics Workshop, March 2018, Kopaonik, Serbia, Book of Abstracts
  21. M. Pavičić and Norman D. Megill,  “Vector Generation of Contextual Sets,” EPJ Web of Conferences 198, 00009 (2019). DOI:  10.1051/epjconf/201919800009  D. Mogilevtsev (Ed.) Quantum Technology International Conference 2018 (QTech 2018), Paris, France, September 5-7, 2018,; Recorded presentatation on Youtube
  22. M. Pavičić, “Can Two-Way Direct Communication Protocols Be Considered Secure? (Invited Talk), EMN Meeting on Quantum, June 18-22 2017, Vienna, Austria; Program & Abstracts;   Abstract of the paper (A25): pp. 48-99; PPT Presentation; Recorded talk on Youtube.
  23. Megill, N.D. and Pavičić, M., “New Classes of Kochen-Specker Contextual Sets” (Invited Talk), MIPRO 2017,  The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics (IEEE Xplore Digital Library), May 22-26, 2017, Opatija, Croatia, Proceedings of The 40th International Convention on Information and Communication Technology, Electronics, and Microelectronics, May 22-26, 2017, Publisher: Institute of Electrical and Electronics Engineers (IEEE), POD Publ: Curran Associates, Inc., Red Hook, NY 12571 USA (2017); PPT presentation – Presented by M. Pavičić; Recorded talk on Youtube.
  24. Pavičić, M., “Massive Generation of Contextual Quantum Sets” (Invited Talk), EMN Meeting on Quantum Communication and Quantum Imaging-2016, August 23-26, 2016, Berlin, Germany; pp. 28-29. Web stranica;  Recorded talk on Youtube; Programme and abstracts.
  25. M. Karuza, “KWISP : the radiation pressure sensor”, Identification of Dark Matter 2016, IDM2016,  London 18-22 July 2016.
  26. N. Demoli, H. Skenderović, M. Stipčević and M. Pavičić, “Photon Counting Digital Holography” (Invited Talk), Proc. SPIE 9890, Optical Micro- and Nanometrology VI, 989003-1-6, May 3, 2016
  27. N. Demoli, “Time-averaged holography using Photon-counting approach” (Invited Talk), Imaging and Applied Optics Congress, 25-28 July 2016, Heidelberg, Germany. DOI: 10.1364/DH.2016.DT2E.1
  28. M. Stipčević, B. G. Christensen, P. G. Kwiat, and D. J. Gauthier, “Advanced active quenching circuits for single-photon avalanche photodiodes” (Invited Talk), SPIE  Defense and Commercial Sensing 2016, Baltimore, Maryland, USA, April 17-21, 2016. DOI: 10.1117/12.2227999
  29. D. J. Gauthier, C. F. Wildfeuer, H. Guilbert, M. Stipčević, B. Christensen, D. Kumor, P. G. Kwiat, T. Brougham, S. M. Barnet, “Quantum Key Distribution Using Hyperentangled Time-Bin States”, Invited lecture, Proc. CQO X and QIM 2 2013, 17-20 June 2013, Rochester, NY, USA. DOI: 10.1364/QIM.2013.W2A.2

Poster sessions at international conferences:

  1. B. Kliček, “The ESSnuSB/ESSnuSB+ detector design”, Poster presented XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16-22 June 2024., Milano, Italy
  2. M. Ghosh, “Physics opportunities at the ESSnuSB/ESSnuSB+ setup”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16-22 June 2024, Milano, Italy
  3. D. Barčot, “Possibility of the sterile neutrino search with NINJA”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16-22 June 2024, Milano, Italy
  4. L. Halić, “The ENUBET Demonstrator: instrumented decay tunnel prototype for a monitored neutrino beam”, Poster presented at: XXXI International Conference on Neutrino Physics and Astrophysics (NEUTRINO 2024), 16-22 June 2024, Milano, Italy
  5. L. Halić, “The ENUBET experiment”, Poster presented at: International Workshop on the Origin of Matter-Antimatter Asymmetry (CP2023), 12-17 February 2023, Les Houches, France
  6. L. Halić, “ESSnuSB – Detecting CP violation in the 2nd neutrino oscillation maximum”, Poster presented at: The 2nd INFN School on Underground Physics: Theory & Experiments (SOUP2022), 20-24 June 2022, LNGS, Gran Sasso, Italy
  7. K. Krhač, “Constraining ESSnuSB neutrino flux by observing elastic scattering of neutrinos on electrons”, European Physical Society conference on high energy physics (EPS-HEP2021), Poster, 26-30 Jul 2021, Online conference hosted by Universitat Hambrug and DESY
  8. M. Ghosh, “Updated physics reach of the ESSnuSB project”, The 28th International Workshop on Weak Interactions and Neutrinos (WIN2021), Poster, 7-12 Jun 2021, Online conference hosted by the University of Minnesota
  9. M. Batelić, M. Stipčević. “Improved circuits for a biologically-inspired random pulse computer”, Poster presented at: Humboldt-Kolleg conference “Science and educational challenges facing Europe in the next decade”, October 2019.
  10. M. Peranić, M. Lončarić, A. Radman, M. Stipčević. “Experimental generation of quantum entanglement and testing fundamentals of quantum physics”, Poster presented at: Humboldt-Kolleg conference “Science and educational challenges facing Europe in the next decade”, October 2019.
  11. B. Kliček, M. Tenti. “Search for muon neutrino disappearance at the OPERA experiment in the CNGS beam”, Poster presented at: The 21st International Workshop on Neutrinos From Accelerators, 26-31 August  2019, Daegu, Republic of Korea, download
  12. H. Skenderović, M. Stipčević, N. Demoli, “Digital Holography at Restricted Conditions and Photon Counting Approach”, Conference on Lasers and Electro-Optics/Europe – European Quantum Electronics Conference (CLEO®/Europe-EQEC 2019), Minhen, Njemačka, 23. – 27. 6. 2019.
  13. H. Skenderović, M. Rakić, E. Klarić Sever, S. Vdović, “Temperature rise in human tooth upon drilling by femtosecond pulses”, 13th European Conference on Atoms Molecules and Photons (ECAMP13), Firenca, Italija, 8.-12. 04. 2019.
  14. M. Cokarić Brdovčak, L. Djaković, I. Bertović, M. Lončarić, A. Begonja Jurak, N. Malatesti, I. Jurak. “Several mechanisms contribute to photodynamic inhibition of HSV-1 infection”, Poster presented at: 31st International Conference on Antiviral Research (ICAR) Porto, Portugal, 2018.
  15. M. Mušković, A. Lesar, I. Gobin, M. Lončarić, N. Malatesti. “The effect of singlet oxygen production and lipophilicity of the photosensitizer in photodynamic activity of N-methylated and N- oxidized pyridylporphyrins”, Poster presented at: 5th Young Medicinal Chemist Symposium, Ljubljana, Slovenija, 2018.
  16. M. Cokarić Brdovčak, L. Djaković, I. Bertović, M. Lončarić, A. Jurak Begonja, N. Malatesti, I. Jurak. “A novel cationic amphiphilic porphyrin-based photosensitizer effectively inhibits replication of HSV-1 by several different mechanisms”, Poster presented at: Power of viruses, Poreč, Hrvatska, 2018.
  17. B. Kliček, S. Dusini. “Search for muon neutrino disappearance at the OPERA experiment in the CNGS beam”, Poster presented at: XXVII International Conference on Neurtino Physics and Astrophysics (NEUTRINO 2016), 4-9 July 2016, London, United Kingdom, download

Teaching:

  1. N. Demoli, “Optics and holography”, Faculty of natural sciences, University of Zagreb, Croatia.
  2. M. Karuza, “Advanced electrodynamics”, “Structure of matter (lab.)”, and “Experimental methods in physics “, University of Rijeka, Croatia.
  3. M. Lončarić, “Laboratorijske vježbe iz geometrijske optike” and  “Laboratorijske vježbe iz fizikalne optike”, University of Applied Sciences Velika Gorica, Velika Gorica, Croatia

Members of PhD committees:

  1. Marko Šprem, doktorska disertacija “Optical communication based on wavelength reuse and modulation averaging”, obrana doktorske disertacije održana 12.05.2018. godine na FER-u.

Mentoring and co-mentoring PhD theses:

  1. (to be added)

 

Invited seminars:

  1. M. Ghosh, “Recent Results of T2K and NOvA and their joint fit”, July 9, 2024, University of Roma Tre, Rome, Italy
  2. M. Ghosh, “Physics opportunities at the ESSnuSB/ESSnuSB+ setup”, lecture given on 24.5.2024. na Faculty of Physics , University of Rijeka
  3. L. Halić, “ESSnuSB: the future of European neutrino physics”, lecture given on 24.5.2024. na Faculty of Physics , University of Rijeka
  4. L. Halić, “ENUBET: Solving the neutrino cross section problem”, lecture given on 24.5.2024. na Faculty of Physics , University of Rijeka
  5. D. Barčot, “What NINJA has that others don’t”, lecture given on 24.5.2024. na Faculty of Physics , University of Rijeka
  6. L. Halić, “ENUBET: a nu hope for cross sections”, lecture given on 15.3.2024. at LP2I Bordeaux, Bordeaux, France
  7. M. Stipčević, “Računalo sa slučajnim impulsima”, lecture given on 15.12.2022. at University of Zagreb, Faculty of Electrical Engineering and Computing (FER)
  8. B. Kliček, “Measuring leptonic CP violation at the second neutrino oscillation maximum with ESSnuSB”, CERN EP Seminar, Talk, 12 Apr 2022
  9. B. Kliček, “The ESSnuSB project: measuring CP violation at the 2nd neutrino oscillation maximum”, High Energy Physics Seminar at the University of Warsaw, 17 Dec 2021
  10. M. Pavičić,”Hypergraph Contextuality,” Invited talk at Journées Informatique Quantique 28/29.11.2019 seminar held at the FEMTO-ST Institute “Franche-Comté Electronics Mechanics Thermal Science and Optics – Sciences and Technologies,” Besancon, France;  Recorded talk on Youtube
  11. M. Stipčević, “Photon detectors, quantum randomness, random flip-flops and their use in ICT security and hyper computation”, May 4, 2016, Special seminar of SEAS hosted by prof. M. Loncar at Harvard SEAS, Lexington, MA, USA. (flyer)
  12. M. Stipčević, “Photon detectors, quantum randomness and their applications in ICT security”, February 19, 2016, Invited seminar hosted by dr. S. Verghese at MIT Lincoln Labs, Lexington, MA, USA.
  13. M. Pavičić,”Two-Way Deterministic Communication Is Like Sending Plain Text under Quantum Protection”, Special Colloquium held at the Department of Physics-Nanooptics, Faculty of Mathematics and Natural Sciences, Humboldt University of Berlin, Germany, on 07.10.2016; Recorded talk on Youtube
  14. M. Stipčević, “Quantum random flip-flop: a novel device for digital and analog signal processing”, March 10, 2015. Invited seminar hosted by Prof. J. E. Bowers, Electrical and computer engineering, University of California Santa Barbara, Santa Barbara, USA (web page)
  15. M. Pavičić, “High-Efficiency Source of Heralded Down-Converted Separated Photons in Arbitrary Bell States”, Colloquium held at Humboldt University of Berlin, Institut for Physics, Germany, on 15.07.2015 (flyer)

Other talks:

  1. B. Kliček, “ESSnuSB projekt”, Jesenska škola fizike 2019, 12.09.2019., IRB, Zagreb, Hrvatska, download
  2. M. Stipčević, “Kvantna kriptografija”, Jesenska škola fizike 2019, 12.09.2019., IRB, Zagreb, Hrvatska, download
  3. M. Stipčević, “Light and us”, popular lecture given at Elementary School V. Kaleba 12.04.2017., Tisno, Croatia. download
  4. M. Lončarić, “Neka bude svjetlost”, Seminar u okviru sastanka Nastavne sekcije Hrvatskog fizikalnog društva održanog 2. lipnja 2016 u Zagrebu.
  5. M. Stipčević, “Svjetlost i fenomen kvantnog sprezanja”, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015. download
  6. M. Pavičić, “Fotoni i kvantna kriptografija“, predavanje u povodu Međunarodne godine svjetla u Hrvatskoj akademiji znanosti i umjetnosti 30.09.2015.

Patents:

  1. S. K. Joshi, R. Ursin, W. F. Ziarkash, M. Stipčević, “Method for calibrating a photodetector” , US2021055156B2, priority date 20.12.2018., granted 14.06.2022.

Awards:

  1. M. Ghosh: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Extracting the best physics sensitivity from T2HKK: A study on optimal detector volume”, Phys. Rev. D 106 (2022), 073006, DOI: 10.1103/PhysRevD.106.073006
  2. M. Ghosh: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Exploring invisible decay at ESSnuSB”, JHEP 05, 133 (2021) DOI: 10.1007/JHEP05(2021)133
  3. M. Ghosh, L. Halić, B. Kliček, K. Krhač, M. Stipčević: Godišnja nagrada Instituta Ruđer Bošković za znanstveni rad: “Updated physics performance of the ESSnuSB experiment”, Eur. Phys. J. C 81, 1130 (2021).   DOI: 10.1140/epjc/s10052-021-09845-8
  4. 2020. M. Peranić – Nagrada za najbolje postersko priopćenje na 4. Simpoziju studenata doktorskih studija PMF-a, https://radio.hrt.hr/aod/simpozij-doktorskih-studija-pmf-a/380167/
  5. Annual award of the Ruđer Bošković Institute for scientific article: Eur. Phys. J. C78 (2018) 62:1-8. DOI: 10.1140/epjc/s10052-017-5509-y
  6. Annual award of the Ruđer Bošković Institute for scientific article: Phys. Rev. D 100 (2019) no.5, 051301; DOI: 10.1103/PhysRevD.100.051301
  7. Annual award of the Ruđer Bošković Institute for scientific article: Phys. Rev. Lett. 120, 211801 (2018). DOI: 10.1103/PhysRevLett.120.211801
  8. 2019. M. Peranić – Award for the best student oral presentation at 7th International Conference Optics & its Applications (OPTICS-2019, http://www.ift.uni.wroc.pl/~optics2019/) for presentation “The source of polarization entangled pairs of photons and testing Bell’s inequality”.
  9. 03.07.2019. M. Batelić -Deans award of University of Zagreb for academic year 2018./2019. for a thesis titled “Pulsed Neural Computing”.
  10. 2019. M. Stipčević – Award for application to competitive project calls, for the project “Single Photon Detectors for Optical Quantum Information Experiments” (SIDOQIE) applied at QuantERA 2019
  11. 2018. M. Stipčević – Ruđer Bošković Institute award for the best scientific paper in 2017, for the paper “An advanced active quenching circuit for ultra-fast quantum cryptography”, Opt. Express 25, 21861-21876 (2017).
  12. In 2017, M. Stipčević – Member of Editorial Board of Nature’s Scientific Reports
  13. In 2016, M. Stipčević – Special award for outstanding contribution to the strengthening of scientific excellence and the reputation of Ruđer Bošković Institute
  14. In 2015, M. Stipčević – “Outstanding reviewer for AIP Review of Scientific Instruments”, Rev. Sci. Instrum. 86, 089801 (2015). DOI: 10.1063/1.4927606
  15. In 2015, M. Stipčević – RBI Director Award for 2015 in the category of encouraging competitive projects applied at HORIZON 2020 for the project “iSEQURE”.

Appearance in media:

  1. 2023. https://lidermedia.hr/tehno/carevo-kubitno-ruho-europska-unija-zeli-postati-kvantna-dolina-156430
  2. https://www.vecernji.hr/techsci/hrvatski-znanstvenici-objavili-rad-o-kvantnoj-komunikaciji-izmedu-tri-drzave-1641077
  3. https://qt.eu/about-quantum-flagship/newsroom/first-intergovernmental-quantum-communication/
  4. https://www.units.it/en/news/first-intergovernmental-quantum-communication
  5. https://opflsoft.net/first-quantum-communication-with-italy-and-slovenia/
  6. https://www.delo.si/novice/znanoteh/prek-kvantne-komunikacije-povezali-tri-mesta/
  7. https://www.vecernji.hr/vijesti/veliki-uspjeh-rudera-na-sastanku-g20-testirali-100-sigurnu-internetsku-vezu-1513714
  8. https://mzo.gov.hr/vijesti/prva-demonstracija-kvantne-komunikacije-izmedju-tri-drzave/4488
  9. https://www.irb.hr/eng/News/First-demonstration-of-quantum-communication-among-three-states
  10. https://mreza.bug.hr/demonstracija-kvantne-komunikacije-izmedu-tri-drzave/
  11. https://www.total-croatia-news.com/politics/55120-croatia-on-g20-summit
  12. https://www.pressreader.com/croatia/vecernji-list-hrvatska/20210807/281505049272168
  13. https://zimo.dnevnik.hr/clanak/probili-led-i-dokazali-da-je-hrvatska-spremna-znanstvenici-s-rudjera-uspjesno-demonstrirali-prvu-javnu-kvantnu-komunikaciju-izmedju-tri-drzave—662045.html
  14. M. Peranić, Radio emisija “Oko znanosti” prvog programa Hrvatskog radija, 28.4.2021., https://radio.hrt.hr/aod/simpozij-doktorskih-studija-pmf-a/380167/
  15. H. Skenderović, Znanstvena emisija HTV “Prometej”, Holografija bioloških struktura, 16.10.2020. Video
  16. H. Skenderović, Intervju u Jutarnjem listu, Hrvati za Nato rade kameru inspiriranu mikrolamelama leptirovih krila, 13.6.2020.
  17. M. Pavičić, “Smrt Mooreovog zakona“, članak po pozivu u časopisu SmartInfoTrend, Vol. 213, str. 10-14 i str. 81, Q4, prosinac 2019.
  18. Tehnologija koja mijenja svijet_ projekt _Quantum Technologies Flagship_ _ Hrvatska – ec.europa.eu
  19. Interview M. Stipčevića u IT magaine BUG MREŽA Prosinac 2019.
  20. Intervju pod naslovom “” u časopisu BUG Mreža 11.11.2019. download
  21. Radio emisija “Oko znanosti” prvog programa Hrvatskog radija pod naslovom “Kvantna kriptografija” emitirana 01.04.2019.  https://radio.hrt.hr/ep/kvantna-kriptografija/280450/
  22. http://spectrum.ieee.org/nanoclast/computing/hardware/a-true-random-number-generator-built-from-carbon-nanotubes-promises-better-security-for-flexible-electronics
  23. http://www.irb.hr/eng/Highlights/On-Demand-Optical-Quantum-Random-Number-Generator-with-Ultra-Fast-Response
  24. http://www.irb.hr/Izdvojene-novosti/Fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  25. http://www.tportal.hr/gadgeterija/tehnologija/387238/Hrvat-osmislio-superbrzi-kvantni-generator-slucajnih-brojeva.html
  26. http://www.vidi.hr/Sci-Tech/Znanost/Novi-hrvatski-kvantni-generator-slucajnih-brojeva
  27. http://cudaprirode.com/portal/bpzn/11389-hrvati-razvili-kvantni-generator-sluajnih-brojeva
  28. http://www.narodni-list.hr/posts/117585006
  29. http://narod.hr/hrvatska/hrvatski-znanstvenik-u-timu-koji-je-razvio-fizicki-generator-slucajnih-brojeva-s-najbrzim-refleksima
  30. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Ve%C4%8Dernji%20list%20-%20Hrvatska/Presscut_17842332.pdf
  31. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Jutarnji%20list/Presscut_17842583.pdf
  32. http://www.presscut.hr/Web%20Sharing%20ZON/02-2018/02-02-2018/Poslovni%20dnevnik/Presscut_17842516.pdf
  33. https://www.hina.hr/vijest/9715949
  34. https://www.vecernji.hr/techsci/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn-1223602
  35. https://zimo.dnevnik.hr/clanak/predstavljen-projekt-zpotpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna—505301.html
  36. http://www.poslovnipuls.com/2018/02/01/predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna/
  37. http://www.vidi.hr/Sci-Tech/Znanost/38-milijuna-kuna-hrvatskom-znanstvenom-centru-CEMS
  38. http://www.cropc.net/it-vijesti/dogadaji/8033-predstavljen-projekt-potpora-vrhunskim-istrazivanjima-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kuna
  39. https://www.obavjestajac.hr/1229179/predstavljen-projekt-centra-izvrsnosti-za-napredne-materijale-i-senzore-vrijedan-38-milijuna-kn
  40. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3112535&Tip=Tekst&Partner_id=1491
  41. http://www.presscut.hr/webpartners/multilang/VIDEOTekst.asp?ID=3130924&Tip=Tekst&Partner_id=1491
  42. http://www.presscut.hr/webpartners/multilang/AudioTekst.asp?ID=3119328&Tip=Tekst&Partner_id=1491

Research topics

  1. Generating quantum coupled pairs of photons

G2D_scheme_LRAt RBI we have built an experimental setup for parametric down-conversion using home made laser wavelength of 405 nm. Photograph on the left shows cross-section of the light cones exiting the nonlinear BBO crystal.

Quantum entangled “Einstein-Podolsky-Rosen” (EPR) photon pairs are created at the intersections of the cones. For most of the planned research, we need much stronger source of energy-degenerated EPR pairs in order to fulfill the objectives of the proposed research in quantum holography, optical resonators, hyperentanglement, super fast quantum cryptography, random number generation, searching for hidden vector bosons, and so on. The preferred technical solution to EPR generation the current state of the art is to build a source in the VIS-NIR wavelength area, where our innovative detection technology achieves the best performance, by using the well known technique of periodically poled nonlinear optical crystals.

  1. Novel photon detectors and detector characterization methods

In our group we have a strong expertise in building single photon detectors based on avalanche photodiodes driven in the Geiger mode. We are active in developing innovative photon-counting techniques as well as in research of novel methods for characterization of photon detectors. The research conducted in CEMS-Photonics is oriented towards the study and use of quantum properties of individual photons, therefore almost all our experiments depend on the detection and counting of photons. To that end we almost exclusively use photon-counting detectors developed and optimized in our lab.

  1. Holography

The current situation in the field of holography is mainly the use of powerful laser source and a CCD camera to record the hologram. We plan to expand the holographic technology in two new directions: holography with individual photons and quantum holography, and for this we need a new type of positionally-resolution camera sensitive to individual photons.

While holography is used for recording and reconstruction of complex three-dimensional wave fronts, interferometry enables the analysis of static and dynamic changes in these wave fronts. Both techniques, holography and interferometry, have gone through several pathways. One route goes from classic to digital (replacing the photo-emulsion CCD sensors) which opened up new opportunities such as the production of digital holographic interferometric video film in color or vibration monitoring of modal structure in real time. Another development path goes towards recording a scene illuminated by fundamentally lowest intensity of light. In all these segments members of our group have made significant contributions. This second time, leading to ultra-low levels of light or to holography with individual photons and, for the moment hypothetical, quantum holography. Terms of ultra-low-level lighting impose particularly demanding laboratory needs such as special light sources, the matrix of the position-resolved detectors sensitive to individual photons, as well as laboratory space completely devoid of vibration and other disturbances. In return, new research directions could provide original theoretical developments, applications and inventions.

  1. Quantum cryptography and quantum communication

Quantum cryptography allows completely secure transfer of information between two points via a technique for growing a previously existing “small” shared key. Up to now has been proven that the security of quantum protocol guaranteed the laws of quantum physics and even under the assumption that they hold only approximately, ie. if our understanding of quantum physics is incomplete. Practical devices for quantum cryptography has already been commercialized (IqQuantitue, Switzerland and MagiQ, USA), but are currently far from the convenience and price that would allow for wider use. In order to obtain practical devices significant progress on fundamental and technological levels is required.

  1. Search for bosons of the hidden sector optical techniques

Hidden Sectors are groups of fundamental fields that act between them but have very little interaction with the visible world, are common ingredients theories that extend the standard model and strive for an explanation of its parameters and hierarchy. Fields in the Standard Model allows kinetic mixing between the Standard Model and the hidden (1) fields where the boson (now hypothetical) that belongs to the added U (1) group called parafotonom. There is a wealth of theoretical models that provide enough freedom to justify the existence of parafotons with any parameters that are allowed by experimental observations. Kinetic mixing provides a mechanism for the oscillation of photons in the light boson and back that can be used in experiments based on its weak interaction with the visible world. This type of experiment is generally called “the passage of light through the wall”. If the photon on one side of the wall turns into parafoton, he can pass unhindered through the opaque wall. On the other side of the wall, provided that the condition of the balance exceeds parafotons photons, in a suitable low-noise detector will be detected photon. Probability observations signal can be increased by several orders of magnitude using optical resonant cavities on both sides of the wall, which is the path of research which we started.

  1. Quantum randomness of quantum contextuality

Coincidence or randomness is an invaluable resource in many areas of scientific research and practical applications, especially in computer science and ICT security. The classic computer generated pseudo-random numbers that can be useful in some applications, they remain fundamentally deterministic and therefore, at least in principle, predictable detrimental to the security of cryptography. We have proven that quantum cryptography is impossible without local private random number generator or something equivalent that. There are several open issues related accident. Firstly, as of yet we have no definition of randomness. Then there is the question of what is the source of randomness in quantum physics, is there a true randomness or are there hidden variables?

Random Number Generators are one of the hot topics of research in the last decade. However the sharp discrepancy between the number of publications (83 patents per year in the last decade, in 1418 total, countless scientific articles) and the number of just five earned practical quantum random number generator that has ever appeared on shows clearly the conceptual and technical immaturity of this branch. In our opinion, the main problems are the lack of evidence of a coincidence and unrepeatable results. Our research will be directed towards the elimination of these problems.

Quantum randomness is also implicitly contained in quantum contextuality. Quantum contextuality is the property of a quantum system that any of its measurements has a value independent of other compatible measurements carried out at the same time. Hence, measurement results of quantum systems cannot in general have predetermined values and the sets that satisfy this quantum property are called Kochen-Specker (KS) sets. In this area, we already have significant theoretical results and we will continue theoretical and experimental research in this area.

The study of randomness and the principle of generating random numbers can easily result in new EU projects, inventions and cooperation with small and medium-sized enterprises (SMEs).

  1. Scalable quantum computing, contextual and quantum repeaters

Quantum computing is a hypothetical computer paradigm in whose practical realization researchers are working with increasing intensity in recent years. Our group is working on the development on algebraic formalism that could allow universal quantum computing using a direct translation of the standard formalism of Hilbert space to algebraic quantum protocols with built exponential acceleration of computation for certain special class of mathematical problems.